skip to main content

Title: Burned area and carbon emissions across northwestern boreal North America from 2001–2019
Abstract. Fire is the dominant disturbance agent in Alaskan and Canadianboreal ecosystems and releases large amounts of carbon into the atmosphere.Burned area and carbon emissions have been increasing with climate change,which have the potential to alter the carbon balance and shift the regionfrom a historic sink to a source. It is therefore critically important totrack the spatiotemporal changes in burned area and fire carbon emissionsover time. Here we developed a new burned-area detection algorithm between2001–2019 across Alaska and Canada at 500 m (meters) resolution thatutilizes finer-scale 30 m Landsat imagery to account for land coverunsuitable for burning. This method strictly balances omission andcommission errors at 500 m to derive accurate landscape- and regional-scaleburned-area estimates. Using this new burned-area product, we developedstatistical models to predict burn depth and carbon combustion for the sameperiod within the NASA Arctic–Boreal Vulnerability Experiment (ABoVE) coreand extended domain. Statistical models were constrained using a database offield observations across the domain and were related to a variety ofresponse variables including remotely sensed indicators of fire severity,fire weather indices, local climate, soils, and topographic indicators. Theburn depth and aboveground combustion models performed best, with poorerperformance for belowground combustion. We estimate 2.37×106 ha (2.37 Mha) burned annually between 2001–2019 over the ABoVE domain (2.87 Mhaacross all of Alaska and Canada), emitting 79.3 ± 27.96 Tg (±1standard deviation) of carbon (C) per year, with a mean combustionrate of 3.13 ± 1.17 kg C m−2. Mean combustion and burn depthdisplayed a general gradient of higher severity in the northwestern portionof the domain to lower severity in the south and east. We also found larger-fire years and later-season burning were generally associated with greatermean combustion. Our estimates are generally consistent with previousefforts to quantify burned area, fire carbon emissions, and their drivers inregions within boreal North America; however, we generally estimate higherburned area and carbon emissions due to our use of Landsat imagery, greateravailability of field observations, and improvements in modeling. The burnedarea and combustion datasets described here (the ABoVE Fire EmissionsDatabase, or ABoVE-FED) can be used for local- to continental-scaleapplications of boreal fire science.  more » « less
Award ID(s):
2019485 2116864 2224776 1636476
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Date Published:
Journal Name:
Page Range / eLocation ID:
2785 to 2804
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Wildfires are a major disturbance to forest carbon (C) balance through both immediate combustion emissions and post-fire ecosystem dynamics. Here we used a process-based biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to simulate C budget in Alaska and Canada during 1986–2016, as impacted by fire disturbances. We extracted the data of difference Normalized Burn Ratio (dNBR) for fires from Landsat TM/ETM imagery and estimated the proportion of vegetation and soil C combustion. We observed that the region was a C source of 2.74 Pg C during the 31-year period. The observed C loss, 57.1 Tg C year −1 , was attributed to fire emissions, overwhelming the net ecosystem production (1.9 Tg C year −1 ) in the region. Our simulated direct emissions for Alaska and Canada are within the range of field measurements and other model estimates. As burn severity increased, combustion emission tended to switch from vegetation origin towards soil origin. When dNBR is below 300, fires increase soil temperature and decrease soil moisture and thus, enhance soil respiration. However, the post-fire soil respiration decreases for moderate or high burn severity. The proportion of post-fire soil emission in total emissions increased with burn severity. Net nitrogen mineralization gradually recovered after fire, enhancing net primary production. Net ecosystem production recovered fast under higher burn severities. The impact of fire disturbance on the C balance of northern ecosystems and the associated uncertainties can be better characterized with long-term, prior-, during- and post-disturbance data across the geospatial spectrum. Our findings suggest that the regional source of carbon to the atmosphere will persist if the observed forest wildfire occurrence and severity continues into the future. 
    more » « less
  2. Abstract

    Circum-boreal and -tundra systems are crucial carbon pools that are experiencing amplified warming and are at risk of increasing wildfire activity. Changes in wildfire activity have broad implications for vegetation dynamics, underlying permafrost soils, and ultimately, carbon cycling. However, understanding wildfire effects on biophysical processes across eastern Siberian taiga and tundra remains challenging because of the lack of an easily accessible annual fire perimeter database and underestimation of area burned by MODIS satellite imagery. To better understand wildfire dynamics over the last 20 years in this region, we mapped area burned, generated a fire perimeter database, and characterized fire regimes across eight ecozones spanning 7.8 million km2of eastern Siberian taiga and tundra from ∼61–72.5° N and 100° E–176° W using long-term satellite data from Landsat, processed via Google Earth Engine. We generated composite images for the annual growing season (May–September), which allowed mitigation of missing data from snow-cover, cloud-cover, and the Landsat 7 scan line error. We used annual composites to calculate the difference Normalized Burn Ratio (dNBR) for each year. The annual dNBR images were converted to binary burned or unburned imagery that was used to vectorize fire perimeters. We mapped 22 091 fires burning 152 million hectares (Mha) over 20 years. Although 2003 was the largest fire year on record, 2020 was an exceptional fire year for four of the northeastern ecozones resulting in substantial increases in fire activity above the Arctic Circle. Increases in fire extent, severity, and frequency with continued climate warming will impact vegetation and permafrost dynamics with increased likelihood of irreversible permafrost thaw that leads to increased carbon release and/or conversion of forest to shrublands.

    more » « less
  3. Hui, Dafeng (Ed.)
    Wildfire frequency and extent is increasing throughout the boreal forest-tundra ecotone as climate warms. Understanding the impacts of wildfire throughout this ecotone is required to make predictions of the rate and magnitude of changes in boreal-tundra landcover, its future flammability, and associated feedbacks to the global carbon (C) cycle and climate. We studied 48 sites spanning a gradient from tundra to low-density spruce stands that were burned in an extensive 2013 wildfire on the north slope of the Alaska Range in Denali National Park and Preserve, central Alaska. We assessed wildfire severity and C emissions, and determined the impacts of severity on understory vegetation composition, conifer tree recruitment, and active layer thickness (ALT). We also assessed conifer seed rain and used a seeding experiment to determine factors controlling post-fire tree regeneration. We found that an average of 2.18 ± 1.13 Kg C m -2 was emitted from this fire, almost 95% of which came from burning of the organic soil. On average, burn depth of the organic soil was 10.6 ± 4.5 cm and both burn depth and total C combusted increased with pre-fire conifer density. Sites with higher pre-fire conifer density were also located at warmer and drier landscape positions and associated with increased ALT post-fire, greater changes in pre- and post-fire understory vegetation communities, and higher post-fire boreal tree recruitment. Our seed rain observations and seeding experiment indicate that the recruitment potential of conifer trees is limited by seed availability in this forest-tundra ecotone. We conclude that the expected climate-induced forest infilling (i.e. increased density) at the forest-tundra ecotone could increase fire severity, but this infilling is unlikely to occur without increases in the availability of viable seed. 
    more » « less
  4. Tundra environments in Alaska are experiencing elevated levels of wildfire, and the frequency is expected to keep increasing due to rapid warming of the Arctic. Because of large amounts of carbon stored in permafrost soils, tundra wildfires may release significant amounts of carbon to the atmosphere that ultimately influence the Earth’s radiative balance. Therefore, accounting for the amount of carbon released from tundra wildfires is important for understanding the trajectory of climate change. We collected data in the Yukon-Kuskokwim River Delta during the summer of 2019 for the purpose of determining organic matter and carbon lost during the 2015 fire season. Organic matter and carbon lost from combustion were determined by combining burn depth measurements with organic matter and carbon content measurements from unburned tundra. Burn depth measurements were taken opportunistically across different levels of burn severity. Three vegetative markers, Sphagnum fuscum, Eriophorum, and Dicranum spp., that survived the fire event were used to measure the difference between the pre and post fire soil height in unburned and burned areas respectively, defined here as burn depth. All burn depth measurements are accompanied with coordinate locations so that they can ground truth and be upscaled by remote sensing data of burn severity. Organic matter and carbon content of the dense live vegetation layer and fibric soil layer were measured in the lab from vegetation and soil cores taken from four different sites in unburned tundra areas. 
    more » « less
  5. Abstract

    Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO2) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO2flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO2database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 ± 0.67 g CO2–C m−2d−1) relative to tundra (0.94 ± 0.4 g CO2–C m−2d−1). We also observed considerable emissions (boreal: 0.24 ± 0.2 g CO2–C m−2d−1; tundra: 0.18 ± 0.16 g CO2–C m−2d−1) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 ± 120 Tg CO2–C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO2to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.

    more » « less