We study subtrajectory clustering under the Fréchet distance. Given one or more trajectories, the task is to split the trajectories into several parts, such that the parts have a good clustering structure. We approach this problem via a new set cover formulation, which we think provides a natural formalization of the problem as it is studied in many applications. Given a polygonal curve P with n vertices in fixed dimension, integers k, ℓ ≥ 1, and a real value Δ > 0, the goal is to find k center curves of complexity at most ℓ such that every point on P is covered by a subtrajectory that has small Fréchet distance to one of the k center curves (≤ Δ). In many application scenarios, one is interested in finding clusters of small complexity, which is controlled by the parameter ℓ. Our main result is a bicriterial approximation algorithm: if there exists a solution for given parameters k, ℓ, and Δ, then our algorithm finds a set of k' center curves of complexity at most ℓ with covering radius Δ' with k' in O(kℓ2 log (kℓ)), and Δ' ≤ 19Δ. Moreover, within these approximation bounds, we can minimize k while keeping the other parameters fixed. If ℓ is a constant independent of n, then, the approximation factor for the number of clusters k is O(log k) and the approximation factor for the radius Δ is constant. In this case, the algorithm has expected running time in Õ(km2 + mn) and uses space in O(n + m), where m=⌈L/Δ⌉ and L is the total arclength of the curve P.
more »
« less
This content will become publicly available on July 31, 2024
Fréchet Distance for Uncertain Curves
In this article, we study a wide range of variants for computing the (discrete and continuous) Fréchet distance between uncertain curves. An uncertain curve is a sequence of uncertainty regions, where each region is a disk, a line segment, or a set of points. A realisation of a curve is a polyline connecting one point from each region. Given an uncertain curve and a second (certain or uncertain) curve, we seek to compute the lower and upper bound Fréchet distance, which are the minimum and maximum Fréchet distance for any realisations of the curves. We prove that both problems are NPhard for the Fréchet distance in several uncertainty models, and that the upper bound problem remains hard for the discrete Fréchet distance. In contrast, the lower bound (discrete [ 5 ] and continuous) Fréchet distance can be computed in polynomial time in some models. Furthermore, we show that computing the expected (discrete and continuous) Fréchet distance is #Phard in some models. On the positive side, we present an FPTAS in constant dimension for the lower bound problem when Δ/δ is polynomially bounded, where δ is the Fréchet distance and Δ bounds the diameter of the regions. We also show a nearlineartime 3approximation for the decision problem on roughly δseparated convex regions. Finally, we study the setting with Sakoe–Chiba time bands, where we restrict the alignment between the curves, and give polynomialtime algorithms for the upper bound and expected discrete and continuous Fréchet distance for uncertainty modelled as point sets.
more »
« less
 Award ID(s):
 1750780
 NSFPAR ID:
 10431652
 Date Published:
 Journal Name:
 ACM Transactions on Algorithms
 Volume:
 19
 Issue:
 3
 ISSN:
 15496325
 Page Range / eLocation ID:
 1 to 47
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this


In this paper we define and investigate the Fréchet edit distance problem. Here, given two polygonal curves $\pi$ and $\sigma$ and a threshhold value $\delta$ , we seek the minimum number of edits to $\sigma$ such that the Fréchet distance between the edited curve and $\pi$ is at most $\delta$. For the edit operations we consider three cases, namely, deletion of vertices, insertion of vertices, or both. For this basic problem we consider a number of variants. Specifically, we provide polynomial time algorithms for both discrete and continuous Fréchet edit distance variants, as well as hardness results for weak Fréchet edit distance variants.more » « less

Computing the Fréchet distance between two polygonal curves takes roughly quadratic time. In this paper, we show that for a special class of curves the Fréchet distance computations become easier. Let [Formula: see text] and [Formula: see text] be two polygonal curves in [Formula: see text] with [Formula: see text] and [Formula: see text] vertices, respectively. We prove four results for the case when all edges of both curves are long compared to the Fréchet distance between them: (1) a lineartime algorithm for deciding the Fréchet distance between two curves, (2) an algorithm that computes the Fréchet distance in [Formula: see text] time, (3) a lineartime [Formula: see text]approximation algorithm, and (4) a data structure that supports [Formula: see text]time decision queries, where [Formula: see text] is the number of vertices of the query curve and [Formula: see text] the number of vertices of the preprocessed curve.more » « less

We consider the problem of designing and analyzing differentially private algorithms that can be implemented on discrete models of computation in strict polynomial time, motivated by known attacks on floating point implementations of realarithmetic differentially private algorithms (Mironov, CCS 2012) and the potential for timing attacks on expected polynomialtime algorithms. As a case study, we examine the basic problem of approximating the histogram of a categorical dataset over a possibly large data universe X. The classic Laplace Mechanism (Dwork, McSherry, Nissim, Smith, TCC 2006 and J. Privacy \& Confidentiality 2017) does not satisfy our requirements, as it is based on real arithmetic, and natural discrete analogues, such as the Geometric Mechanism (Ghosh, Roughgarden, Sundarajan, STOC 2009 and SICOMP 2012), take time at least linear in X, which can be exponential in the bit length of the input. In this paper, we provide strict polynomialtime discrete algorithms for approximate histograms whose simultaneous accuracy (the maximum error over all bins) matches that of the Laplace Mechanism up to constant factors, while retaining the same (pure) differential privacy guarantee. One of our algorithms produces a sparse histogram as output. Its ``"perbin accuracy" (the error on individual bins) is worse than that of the Laplace Mechanism by a factor of logX, but we prove a lower bound showing that this is necessary for any algorithm that produces a sparse histogram. A second algorithm avoids this lower bound, and matches the perbin accuracy of the Laplace Mechanism, by producing a compact and efficiently computable representation of a dense histogram; it is based on an (n+1)wise independent implementation of an appropriately clamped version of the Discrete Geometric Mechanism.more » « less

We model the societal task of redistricting political districts as a partitioning problem: Given a set of n points in the plane, each belonging to one of two parties, and a parameter k, our goal is to compute a partition P of the plane into regions so that each region contains roughly s = n/k points. P should satisfy a notion of "local" fairness, which is related to the notion of core, a wellstudied concept in cooperative game theory. A region is associated with the majority party in that region, and a point is unhappy in P if it belongs to the minority party. A group D of roughly s contiguous points is called a deviating group with respect to P if majority of points in D are unhappy in P. The partition P is locally fair if there is no deviating group with respect to P.This paper focuses on a restricted case when points lie in 1D. The problem is nontrivial even in this case. We consider both adversarial and "beyond worstcase" settings for this problem. For the former, we characterize the input parameters for which a locally fair partition always exists; we also show that a locally fair partition may not exist for certain parameters. We then consider input models where there are "runs" of red and blue points. For such clustered inputs, we show that a locally fair partition may not exist for certain values of s, but an approximate locally fair partition exists if we allow some regions to have smaller sizes. We finally present a polynomialtime algorithm for computing a locally fair partition if one exists.more » « less