skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Entoptic Field Camera as Metaphor-Driven Research-through-Design with AI Technologies
Artificial intelligence (AI) technologies are widely deployed in smartphone photography; and prompt-based image synthesis models have rapidly become commonplace. In this paper, we describe a Research-through-Design (RtD) project which explores this shift in the means and modes of image production via the creation and use of the Entoptic Field Camera. Entoptic phenomena usually refer to perceptions of floaters or bright blue dots stemming from the physiological interplay of the eye and brain. We use the term entoptic as a metaphor to investigate how the material interplay of data and models in AI technologies shapes human experiences of reality. Through our case study using first-person design and a field study, we offer implications for critical, reflective, more-than-human and ludic design to engage AI technologies; the conceptualisation of an RtD research space which contributes to AI literacy discourses; and outline a research trajectory concerning materiality and design affordances of AI technologies.  more » « less
Award ID(s):
2142795
PAR ID:
10431794
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The Entoptic Field Camera as Metaphor-Driven Research-through-Design with AI Technologies
Page Range / eLocation ID:
1 to 19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Keathley, H.; Enos, J.; Parrish, M. (Ed.)
    The role of human-machine teams in society is increasing, as big data and computing power explode. One popular approach to AI is deep learning, which is useful for classification, feature identification, and predictive modeling. However, deep learning models often suffer from inadequate transparency and poor explainability. One aspect of human systems integration is the design of interfaces that support human decision-making. AI models have multiple types of uncertainty embedded, which may be difficult for users to understand. Humans that use these tools need to understand how much they should trust the AI. This study evaluates one simple approach for communicating uncertainty, a visual confidence bar ranging from 0-100%. We perform a human-subject online experiment using an existing image recognition deep learning model to test the effect of (1) providing single vs. multiple recommendations from the AI and (2) including uncertainty information. For each image, participants described the subject in an open textbox and rated their confidence in their answers. Performance was evaluated at four levels of accuracy ranging from the same as the image label to the correct category of the image. The results suggest that AI recommendations increase accuracy, even if the human and AI have different definitions of accuracy. In addition, providing multiple ranked recommendations, with or without the confidence bar, increases operator confidence and reduces perceived task difficulty. More research is needed to determine how people approach uncertain information from an AI system and develop effective visualizations for communicating uncertainty. 
    more » « less
  2. Much reporting on research-through-design (RtD) is vague about markers of time and temporal qualities. This lack of temporal attunement risks obscuring important contextual knowledge, hidden labour, material agencies and potential knowledge contributions. We turn to the notion of the event to articulate the granularities and nuances of RtD processes with an expanded vocabulary. We draw on prior calls from RtD practitioners, the philosophical roots of events, and our previous work with the term in our own research. We describe seven terms to expand the temporal vocabulary of RtD, which can be used to build narratives that emphasize knowledge created along the way, and relieve pressure from the ‘final’ artifact. Our contributions are 1) design events as an ontological shift and analytical tool and 2) a vocabulary that scaffolds design events as a sensitizing tool. We end with a call for more experimentation of non-chronological narratives of RtD. 
    more » « less
  3. This paper studies the design of an AI tool that supports gig knowledge workers, rather than displacing them, focusing on text-based generative AI technologies. Through a formative study involving interviews and design activities, gig workers shared their views on text-based generative AI and envisioned applications where AI acts as managers, secretaries, and communication aids. Leveraging these insights, we created a generative-AI enhanced tool, Office-Mind AI, to aid gig workers. Our research advances the conversation around algorithmic labor by designing a worker-focused intelligent tool. This tool harness collective intelligence among workers and AI, fostering productive human-AI partnerships. We conclude by discussing the future prospects of collective intelligence tools designed for worker-AI collaborations. 
    more » « less
  4. Generative artificial intelligence (GenAI) systems introduce new possibilities for enhancing professionals’ workflows, enabling novel forms of human–AI co-creation. However, professionals often strug- gle to learn to work with GenAI systems effectively. While research has begun to explore the design of interfaces that support users in learning to co-create with GenAI, we lack systematic approaches to investigate the effectiveness of these supports. In this paper, we present a systematic approach for studying how to support learn- ing to co-create with GenAI systems, informed by methods and concepts from the learning sciences. Through an experimental case study, we demonstrate how our approach can be used to study and compare the impacts of different types of learning supports in the context of text-to-image GenAI models. Reflecting on these results, we discuss directions for future work aimed at improving interfaces for human–AI co-creation. 
    more » « less
  5. There is a critical need for community engagement in the process of adopting artificial intelligence (AI) technologies in public health. Public health practitioners and researchers have historically innovated in areas like vaccination and sanitation but have been slower in adopting emerging technologies such as generative AI. However, with increasingly complex funding, programming, and research requirements, the field now faces a pivotal moment to enhance its agility and responsiveness to evolving health challenges. Participatory methods and community engagement are key components of many current public health programs and research. The field of public health is well positioned to ensure community engagement is part of AI technologies applied to population health issues. Without such engagement, the adoption of these technologies in public health may exclude significant portions of the population, particularly those with the fewest resources, with the potential to exacerbate health inequities. Risks to privacy and perpetuation of bias are more likely to be avoided if AI technologies in public health are designed with knowledge of community engagement, existing health disparities, and strategies for improving equity. This viewpoint proposes a multifaceted approach to ensure safer and more effective integration of AI in public health with the following call to action: (1) include the basics of AI technology in public health training and professional development; (2) use a community engagement approach to co-design AI technologies in public health; and (3) introduce governance and best practice mechanisms that can guide the use of AI in public health to prevent or mitigate potential harms. These actions will support the application of AI to varied public health domains through a framework for more transparent, responsive, and equitable use of this evolving technology, augmenting the work of public health practitioners and researchers to improve health outcomes while minimizing risks and unintended consequences. 
    more » « less