skip to main content


Title: The Entoptic Field Camera as Metaphor-Driven Research-through-Design with AI Technologies
Artificial intelligence (AI) technologies are widely deployed in smartphone photography; and prompt-based image synthesis models have rapidly become commonplace. In this paper, we describe a Research-through-Design (RtD) project which explores this shift in the means and modes of image production via the creation and use of the Entoptic Field Camera. Entoptic phenomena usually refer to perceptions of floaters or bright blue dots stemming from the physiological interplay of the eye and brain. We use the term entoptic as a metaphor to investigate how the material interplay of data and models in AI technologies shapes human experiences of reality. Through our case study using first-person design and a field study, we offer implications for critical, reflective, more-than-human and ludic design to engage AI technologies; the conceptualisation of an RtD research space which contributes to AI literacy discourses; and outline a research trajectory concerning materiality and design affordances of AI technologies.  more » « less
Award ID(s):
2142795
NSF-PAR ID:
10431794
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The Entoptic Field Camera as Metaphor-Driven Research-through-Design with AI Technologies
Page Range / eLocation ID:
1 to 19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Keathley, H. ; Enos, J. ; Parrish, M. (Ed.)
    The role of human-machine teams in society is increasing, as big data and computing power explode. One popular approach to AI is deep learning, which is useful for classification, feature identification, and predictive modeling. However, deep learning models often suffer from inadequate transparency and poor explainability. One aspect of human systems integration is the design of interfaces that support human decision-making. AI models have multiple types of uncertainty embedded, which may be difficult for users to understand. Humans that use these tools need to understand how much they should trust the AI. This study evaluates one simple approach for communicating uncertainty, a visual confidence bar ranging from 0-100%. We perform a human-subject online experiment using an existing image recognition deep learning model to test the effect of (1) providing single vs. multiple recommendations from the AI and (2) including uncertainty information. For each image, participants described the subject in an open textbox and rated their confidence in their answers. Performance was evaluated at four levels of accuracy ranging from the same as the image label to the correct category of the image. The results suggest that AI recommendations increase accuracy, even if the human and AI have different definitions of accuracy. In addition, providing multiple ranked recommendations, with or without the confidence bar, increases operator confidence and reduces perceived task difficulty. More research is needed to determine how people approach uncertain information from an AI system and develop effective visualizations for communicating uncertainty. 
    more » « less
  2. Abstract

    The growing capabilities of artificial intelligence (AI) word processing models have demonstrated exceptional potential to impact language related tasks and functions. Their fast pace of adoption and probable effect has also given rise to controversy within certain fields. Models, such as GPT-3, are a particular concern for professionals engaged in writing, particularly as their engagement with these technologies is limited due to lack of ability to control their output. Most efforts to maximize and control output rely on a process known as prompt engineering, the construction and modification of the inputted prompt with expectation for certain outputted or desired text. Consequently, prompt engineering has emerged as an important consideration for research and practice. Previous conceptions of prompt engineering have largely focused on technical and logistic modifications to the back-end processing, remaining inaccessible and, still, limited for most users. In this paper, we look to the technical communication field and its methods of text generation—the rhetorical situation—to conceptualize prompt engineering in a more comprehensible way for its users by considering the context and rhetoric. We introduce a framework, consisting of a formula, to prompt engineering, which demands all components of the rhetorical situation be present in the inputted prompt. We present discussions on the future of AI writing models and their use in both professional and educational settings. Ultimately, this discussion and its findings aim to provide a means of integrating agency and writer-centric methods to AI writing tools to advance a more human-in-the-loop approach. As the use of generative AI and especially NLP-based technologies become common across societal functions, the use of prompt engineering will play a crucial role not just in adoption of the technology, but also its productive and responsible use.

     
    more » « less
  3. Recent progress in data-driven vision and language-based tasks demands developing training datasets enriched with multiple modalities representing human intelligence. The link between text and image data is one of the crucial modalities for developing AI models. The development process of such datasets in the video domain requires much effort from researchers and annotators (experts and non-experts). Researchers re-design annotation tools to extract knowledge from annotators to answer new research questions. The whole process repeats for each new question which is timeconsuming. However, since the last decade, there has been little change in how the researchers and annotators interact with the annotation process. We revisit the annotation workflow and propose a concept of an adaptable and scalable annotation tool. The concept emphasizes its users’ interactivity to make annotation process design seamless and efficient. Researchers can conveniently add newer modalities to or augment the extant datasets using the tool. The annotators can efficiently link free-form text to image objects. For conducting human-subject experiments on any scale, the tool supports the data collection for attaining group ground truth. We have conducted a case study using a prototype tool between two groups with the participation of 74 non-expert people. We find that the interactive linking of free-form text to image objects feels intuitive and evokes a thought process resulting in a high-quality annotation. The new design shows ≈ 35% improvement in the data annotation quality. On UX evaluation, we receive above-average positive feedback from 25 people regarding convenience, UI assistance, usability, and satisfaction. 
    more » « less
  4. Automatic emotion recognition (ER)-enabled wellbeing interventions use ER algorithms to infer the emotions of a data subject (i.e., a person about whom data is collected or processed to enable ER) based on data generated from their online interactions, such as social media activity, and intervene accordingly. The potential commercial applications of this technology are widely acknowledged, particularly in the context of social media. Yet, little is known about data subjects' conceptualizations of and attitudes toward automatic ER-enabled wellbeing interventions. To address this gap, we interviewed 13 US adult social media data subjects regarding social media-based automatic ER-enabled wellbeing interventions. We found that participants' attitudes toward automatic ER-enabled wellbeing interventions were predominantly negative. Negative attitudes were largely shaped by how participants compared their conceptualizations of Artificial Intelligence (AI) to the humans that traditionally deliver wellbeing support. Comparisons between AI and human wellbeing interventions were based upon human attributes participants doubted AI could hold: 1) helpfulness and authentic care; 2) personal and professional expertise; 3) morality; and 4) benevolence through shared humanity. In some cases, participants' attitudes toward automatic ER-enabled wellbeing interventions shifted when participants conceptualized automatic ER-enabled wellbeing interventions' impact on others, rather than themselves. Though with reluctance, a minority of participants held more positive attitudes toward their conceptualizations of automatic ER-enabled wellbeing interventions, citing their potential to benefit others: 1) by supporting academic research; 2) by increasing access to wellbeing support; and 3) through egregious harm prevention. However, most participants anticipated harms associated with their conceptualizations of automatic ER-enabled wellbeing interventions for others, such as re-traumatization, the spread of inaccurate health information, inappropriate surveillance, and interventions informed by inaccurate predictions. Lastly, while participants had qualms about automatic ER-enabled wellbeing interventions, we identified three development and delivery qualities of automatic ER-enabled wellbeing interventions upon which their attitudes toward them depended: 1) accuracy; 2) contextual sensitivity; and 3) positive outcome. Our study is not motivated to make normative statements about whether or how automatic ER-enabled wellbeing interventions should exist, but to center voices of the data subjects affected by this technology. We argue for the inclusion of data subjects in the development of requirements for ethical and trustworthy ER applications. To that end, we discuss ethical, social, and policy implications of our findings, suggesting that automatic ER-enabled wellbeing interventions imagined by participants are incompatible with aims to promote trustworthy, socially aware, and responsible AI technologies in the current practical and regulatory landscape in the US. 
    more » « less
  5. Research exploring how to support decision-making has often used machine learning to automate or assist human decisions. We take an alternative approach for improving decision-making, using machine learning to help stakeholders surface ways to improve and make fairer decision-making processes. We created "Deliberating with AI", a web tool that enables people to create and evaluate ML models in order to examine strengths and shortcomings of past decision-making and deliberate on how to improve future decisions. We apply this tool to a context of people selection, having stakeholders---decision makers (faculty) and decision subjects (students)---use the tool to improve graduate school admission decisions. Through our case study, we demonstrate how the stakeholders used the web tool to create ML models that they used as boundary objects to deliberate over organization decision-making practices. We share insights from our study to inform future research on stakeholder-centered participatory AI design and technology for organizational decision-making. 
    more » « less