skip to main content


Title: Craftland is Mathland: Mathematical insight and the generative role of fiber crafts in maker education
There is tremendous excitement around makerspaces for deepening and enriching curricula across subjects, as well as engaging traditionally marginalized learners in new ways. To address the lack of translation of maker education projects to mathematics learning, we propose that educators aspire to create a “Mathland” when designing maker educational activities. Mathlands are environments envisioned by Seymour Papert where mathematics are learned alongside ways of doing mathematics in self-selected contexts, leading to an epistemology and natural language of mathematics that pervades all experiences. To imagine a Mathland where women’s participation in mathematics is lifelong and lifewide, we explore traditionally female-dominated fiber crafts where long-term engagement, mathematics, and heritage intersect. As part of a longitudinal embedded multi-year ethnographic study, we conducted cohort analyses as well as grounded, iterative, and thematic coding of semi-structured interview data, augmented with crafting artifacts from 65 adult fiber crafters. Using qualitative analytical techniques, we asked: How does math occur in craft? How do crafters observe the intersection between math and craft in process? Fiber crafts were found to present a “Mathland,” a lifelong context for immersive math engagement. We present crafters’ math insights in the craft, as well as multiple aspects of the crafts and surrounding communities that supported the crafters in sustaining their engagement with mathematics throughout their lifetime. This study has implications for the design of inclusive and lifelong maker educational environments for mathematics learning.  more » « less
Award ID(s):
1647150 2100401
NSF-PAR ID:
10431808
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Education
Volume:
7
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study investigates connections between fabric crafts and the breadth and depth of mathematics involved in pursuing the crafts with a particular focus on quilting. The authors became participant observers in crafting circles, conducted 65 semi-structured interviews to investigate crafters’ mathematical insights in their projects, and analyzed artifacts through close manual examination and photographs to deepen these insights. We ask the questions: (1) How do crafters observe the interplay between mathematics and the process of a craft? (2) How can crafters’ products illuminate the breadth and depth of mathematics? The findings suggest that the different ways in which mathematics and craft intersect either bear the form of a craftforward approach, as crafters produce patterns and explore it through changes in the patterns or in the form of a math-forward approach, in which crafting directly draws on mathematical concepts guiding the work toward the improved performance or modeling of math concepts. 
    more » « less
  2. Researchers support race, gender, and age diverse groups of people to create with maker electronics. These groups include older adults, who are often overlooked as not interested or capable of learning new technologies due to ageist stereotypes. One approach, often involving e-textiles, leverages crafting as a bridge to broaden participation in making. We investigated ways to broaden participation in maker electronics for older adults by remotely co-designing e-textile projects with 6 older adult crafters over the course of 5 workshop sessions for a total of 45 hours. We developed a deeper understanding of their practices, identifying a Planner-Improviser Spectrum for how they approached their craft, and created medium fdelity prototypes. Our design implications draw on our participants’ crafting experience and their experience in the workshop to highlight what e-textile toolkit designers can learn from skilled older adult crafters, such as selecting familiar materials, supporting aesthetic goals, and making electronics more attainable. 
    more » « less
  3. Abstract

    Traditionally, learning among young students has taken place within structured, physical classroom settings. However, the emergence of distance learning has introduced a diverse range of learning methods, including online, hybrid, and blended approaches. When the COVID-19 pandemic led to extended delays in in-person instruction, use of educational technologies such as asynchronous videos and online platforms were deployed to deliver mathematics curricula aligned with the Common Core State Standards (CCSS), though best practices for teaching mathematics asynchronously are not well studied. This study focuses on exploring the effectiveness of a math course on proportional reasoning that was co-designed, developed, and deployed in 5th and 6th grade Orange County classrooms. Examining the learning experience design (LXD) paradigm, this research focuses on discerning its influence on (n = 303) children's engagement during their involvement in an online, video-based math course. LXD is implemented by combining evidence-based pedagogical instructional design with human-centered user experience (UX) design. The study utilized a structural equation model to analyze the relationships between learners' user experiences, situational interest, mind-wandering, and online engagement. The results demonstrated significant direct effects between students' situational interest, user experience, and their level of online engagement. Findings also indicate that students' situational interest and mind-wandering significantly mediate the relationship between their user experiences and online engagement. These results have important theoretical and practical implications for researchers, designers, and instructors. By combining evidenced-based pedagogical learning design with human-centered user experience design, LX designers can promote situational interest, reduce mind-wandering, and increase engagement in elementary mathematics courses conducted in asynchronous online settings.

     
    more » « less
  4. Abstract

    Despite recent efforts to support learners from traditionally minoritized backgrounds in mathematics, inequities in math achievement and participation still exist, particularly for women and people of color. Additionally, much of how math is taught in schools aligns with a particular epistemology that comes from western mathematicians and philosophers.  While a strong link between weaving and mathematics has been established, fewer studies explore the possibilities of this link for supporting youth’s pluralistic engagement with mathematics in educational settings. Thus, we ask: In a making-focused intervention designed to expose youth to the mathematical practices inherent in weaving, how do student-created artifacts showcase learning? In this paper, four cases demonstrate how middle-school youth learning to weave and learning through weaving experimented or leveled up their planned or implemented designs. Their learning processes showcase engagement with mathematics that mirrors that of more experienced weavers. Making visible the mathematical engagement that youth undertake through weaving may be a step toward building frameworks and classroom activities through making that work to combat these disciplinary issues.

     
    more » « less
  5. null (Ed.)
    Communication of ideas involves the simultaneous efforts of verbal, physical and neurological processes (Sherr, 2008). In elementary classrooms where young students are in the process of developing their verbal capacities, gestures from both the teacher and students serve as a key component of communication of new ideas and the processing of social information (Foglia & Wilson, 2013). Thus far, research efforts to understand how students utilize gestures in the communication and understanding of ideas have focused primarily on mathematics and the physical sciences (see Nemirovsky & Ferrara, 2009; Nuñez, Edwards & Matos, 1999; Shapiro, 2014; Sherr, 2008). With the introduction of the Next Generation Science Standards (NGSS Lead States, 2013), students engineering is now included in K-12 instruction. Engineering education centers around designing and optimizing solutions to engineering challenges. The creation of a design solution differentiates engineering education from other classroom subject areas. Current work in engineering education focuses mostly on students’ words or drawings, leaving out gestures as an important component of students' communication of engineering designs. This study aimed to contribute to the general understanding of students’ use of gestures and manipulatives when discussing their engineering design solutions and is part of a larger NSF-funded project. Students participated in pre- and post-field trip classroom activities that extended learning done on an engineering-focused field trip to the local science center into the classroom. For this study, we focused on a module that challenged students to design a craft that either slowed the fall of a penny (classroom engineering design challenge) or hovered in a column of upward moving air (field trip engineering design challenge). We analyzed six videos (3 from the classroom and 3 from the field trip) of first-grade student explanations of their crafts to identify their use of gestures and prototyped craft design solutions in communicating. In this paper, we explore how student use of gestures and use of prototyped design solutions overlap and differentiate to understand how student sense-making can be understood through each. 
    more » « less