skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Twisted Diindeno‐Fused Dibenzo[ a , h ]anthracene Derivatives and their Dianions
Abstract We report a facile synthesis of diindeno‐fused dibenzo[a,h]anthracene derivatives (DIDBA‐2Cl,DIDBA‐2Ph, andDIDBA‐2H)with different degrees of non‐planarity using three substituents (chloro, phenyl, and hydrogen) of various sizes. The planarization of their cores, as evidenced by the decreased end‐to‐end torsional angles, was confirmed by X‐ray crystallography. Their enhanced energy gaps with twisting were investigated by a combination of spectroscopic and electrochemical methods with density functional theory, which showed a transition from singlet open‐shell to closed‐shell configuration. Moreover, their doubly reduced states,DIDBA‐2Ph2−andDIDBA‐2H2−, were achieved by chemical reduction. The structures of dianions were identified by X‐ray crystallographic analysis, which elucidated that the electron charging further distorted the backbones. The electronic structure of the dianions was demonstrated by experimental and theoretical approaches, suggesting decreased energy gaps with larger non‐planarity, different from the neutral species.  more » « less
Award ID(s):
2003411 1834750
PAR ID:
10431948
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
34
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mono‐ and dianions of 2‐tert‐butyl‐3a2‐azapentabenzo[bc,ef,hi,kl,no]corannulene (1 a) were synthesized by chemical reduction with sodium and cesium metals, and crystallized as the corresponding salts in the presence of 18‐crown‐6 ether. X‐ray diffraction analysis of the sodium salt, [{Na+(18‐crown‐6)(THF)2}3{Na+(18‐crown‐6)(THF)}(1 a2−)2], revealed the presence of a naked dianion. In contrast, controlled reaction of1 awith Cs allowed the isolation of singly and doubly reduced forms of1 a, both forming π‐complexes with cesium ions in the solid state. In [{Cs+(18‐crown‐6)}(1 a)]⋅THF, asymmetric binding of the Cs+ion to the concave surface of1 ais observed, whereas in [{Cs+(18‐crown‐6)}2(1 a2−)], two Cs+ions bind to both the concave and convex surfaces of the dianion. The present study provides the first successful isolation and characterization of the reduced products of heteroatom‐containing buckybowl molecules. 
    more » « less
  2. Abstract For the first time, the capture of the planar antiaromatic parent benzene dianion in between two trivalent rare earth (RE) metal cations (REIII), each stabilized by two guanidinate ligands, is reported. The synthesized inverse‐sandwich complexes [{(Me3Si)2NC(NiPr)2}2RE]2(μ‐η6 : η6‐C6H6), (RE=Y (1), Dy (2), and Er (3)) were crystallized from aprotic solvents and feature a remarkably planar parent benzene dianion, previously not encountered for any metal ion prone to low or absent covalency. The −2 charge localization at the benzene ligand was deduced from the results obtained by single‐crystal X‐ray diffraction analyses, spectroscopy, magnetometry, and Density Functional Theory (DFT) calculations. In the1H NMR spectrum of the diamagnetic Y complex1, the equivalent proton resonance of the bridging benzene dianion ligand is drastically shifted to higher field in comparison to free benzene. This and the calculated highly positive Nucleus‐Independent Chemical Shift (NICS) values are attributed to the antiaromatic character of the benzene dianion ligand. The crucial role of the ancillary guanidinate ligand scaffold in stabilizing the planar benzene dianion conformation was also elucidated by DFT calculations. Remarkably, the planarity of the benzene dianion originates from the stabilization of the π‐type orbitals of the d‐manifold and compression through its strong electrostatic interaction with the two REIIIsites. 
    more » « less
  3. Abstract Nitrous acid (HONO) plays pivotal roles in various metal‐free as well as metal‐mediated routes relevant to biogeochemistry, atmospheric chemistry, and mammalian physiology. While the metastable nature of HONO hinders the detailed investigations into its reactivity at a transition metal site, this report herein utilizes a heteroditopic copper(II) cryptate [oC]CuIIfeaturing a proton‐responsive second‐coordination‐sphere located at a suitable distance from a [CuII](ONO) core, thereby enabling isolation of a [CuII](κ1‐ONO⋅⋅⋅H+) complex (2H‐NO2). A set of complementary analytical studies (UV‐vis,14N/15N FTIR,15N NMR, HRMS, EPR, and CHN) on2H‐NO2and its15N‐isotopomer (2H‐15NO2) reveals the formulation of2H‐NO2as {[oCH]CuII1‐ONO)}(ClO4)2. Non‐covalent interaction index (NCI) based on reduced density gradient (RDG) analysis on {[oCH]CuII1‐ONO)}2+discloses a H‐bonding interaction between the apical 3° ammonium site and the nitrite anion bound to the copper(II) site. The FTIR spectra of [CuII](κ1‐ONO⋅⋅⋅H+) species (2H‐NO2) shows a shift of ammonium NH vibrational feature to a lower wavenumber due to the H‐bonding interaction with nitrite. The reactivity profile of [CuII](κ1‐ONO⋅⋅⋅H+) species (2H‐NO2) towards anaerobic nitration of substituted phenol (2,4‐DTBP) is distinctly different relative to that of the closely related tripodal [CuII]‐nitrite complexes (1‐NO2/3‐NO2/4‐NO2). 
    more » « less
  4. Abstract We report on the largest open‐shell graphenic bilayer and also the first example of triply negatively charged radical π‐dimer. Upon three‐electron reduction, bilayer nanographene fragment molecule (C96H24Ar6)2(Ar=2,6‐dimethylphenyl) (12) was transformed to a triply negatively charged species123.−, which has been characterized by single‐crystal X‐ray diffraction, electron paramagnetic resonance (EPR) spectroscopy and magnetic properties on a superconducting quantum interference device (SQUID).123.−features a 96‐center‐3‐electron (96c/3e) pancake bond with a doublet ground state, which can be thermally excited to a quartet state. It consists of 34 π‐fused rings with 96 conjugatedsp2carbon atoms. Spin frustration is observed with the frustration parameterf>31.8 at low temperatures in123.−, which indicates graphene upon reduction doping may behave as a quantum spin liquid. 
    more » « less
  5. Abstract A sterically strained 32π‐electron antiaromatic bis‐BODIPY macrocycle in which two BODIPY fragments are linked byp‐divinylbenzene groups was prepared and characterized. Unlike regular BODIPYs, the fluorescence in this macrocycle is quenched. The broad signals in the NMR spectra of the macrocycle were explained by the vibronic freedom of thep‐divinylbenzene fragments. The possible diradicaloid nature of the macrocycle was excluded on the basis of variable‐temperature EPR spectra in solution and in solid state, which is indicative of its closed‐shell quinoidal structure. Themeso‐C−H bond in the macrocycle and its precursor BODIPY dialdehyde3forms a weak hydrogen bond with THF and is susceptible for the nucleophilic attack by organic amines and cyanide anion. The reaction products of such a nucleophilic attack havemeso‐sp3carbon atoms and were characterized by NMR, mass spectrometry and, in one case, X‐ray crystallography. Unlike the initial bis‐BODIPY macrocycle, the adducts have strong fluorescence in the 400 nm region. The electronic structure and spectroscopic properties of new chromophores were probed by density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations and correlate well with the experimental data. 
    more » « less