skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microbe Profile: Alteromonas macleodii − a widespread, fast-responding, ‘interactive’ marine bacterium
Alteromonas macleodii is a marine heterotrophic bacterium with widespread distribution − from temperate to tropical oceans, and from surface to deep waters. Strains of A. macleodii exhibit considerable genomic and metabolic variability, and can grow rapidly on diverse organic compounds. A. macleodii is a model organism for the study of population genomics, physiological adaptations and microbial interactions, with individual genomes encoding diverse phenotypic traits influenced by recombination and horizontal gene transfer.  more » « less
Award ID(s):
2049004
PAR ID:
10431987
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Microbiology
Volume:
168
Issue:
11
ISSN:
1350-0872
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many marine microbes require vitamin B12 (cobalamin) but are unable to synthesize it, necessitating reliance on other B12-producing microbes. Thus, phytoplankton and bacterioplankton community dynamics can partially depend on the production and release of a limiting resource by members of the same community. We tested the impact of temperature and B12 availability on the growth of two bacterial taxa commonly associated with phytoplankton: Ruegeria pomeroyi, which produces B12 and fulfills the B12 requirements of some phytoplankton, and Alteromonas macleodii, which does not produce B12 but also does not strictly require it for growth. For B12-producing R. pomeroyi, we further tested how temperature influences B12 production and release. Access to B12 significantly increased growth rates of both species at the highest temperatures tested (38 °C for R. pomeroyi, 40 °C for A. macleodii) and A. macleodii biomass was significantly reduced when grown at high temperatures without B12, indicating that B12 is protective at high temperatures. Moreover, R. pomeroyi produced more B12 at warmer temperatures but did not release detectable amounts of B12 at any temperature tested. Results imply that increasing temperatures and more frequent marine heatwaves with climate change will influence microbial B12 dynamics and could interrupt symbiotic resource sharing. 
    more » « less
  2. Abstract It is now widely accepted that siderophores play a role in marine iron biogeochemical cycling. However, the mechanisms by which siderophores affect the availability of iron from specific sources and the resulting significance of these processes on iron biogeochemical cycling as a whole have remained largely untested. In this study, we develop a model system for testing the effects of siderophore production on iron bioavailability using the marine copiotroph Alteromonas macleodii ATCC 27126. Through the generation of the knockout cell line ΔasbB::kmr, which lacks siderophore biosynthetic capabilities, we demonstrate that the production of the siderophore petrobactin enables the acquisition of iron from mineral sources and weaker iron-ligand complexes. Notably, the utilization of lithogenic iron, such as that from atmospheric dust, indicates a significant role for siderophores in the incorporation of new iron into marine systems. We have also detected petrobactin, a photoreactive siderophore, directly from seawater in the mid-latitudes of the North Pacific and have identified the biosynthetic pathway for petrobactin in bacterial metagenome-assembled genomes widely distributed across the global ocean. Together, these results improve our mechanistic understanding of the role of siderophore production in iron biogeochemical cycling in the marine environment wherein iron speciation, bioavailability, and residence time can be directly influenced by microbial activities. 
    more » « less
  3. Abstract Many microbial photoautotrophs depend on heterotrophic bacteria for accomplishing essential functions. Environmental changes, however, could alter or eliminate such interactions. We investigated the effects of changing pCO2 on gene transcription in co-cultures of 3 strains of picocyanobacteria (Synechococcus strains CC9311 and WH8102 and Prochlorococcus strain MIT9312) paired with the ‘helper’ bacterium Alteromonas macleodii EZ55. Co-culture with cyanobacteria resulted in a much higher number of up- and down-regulated genes in EZ55 than pCO2 by itself. Pathway analysis revealed significantly different transcription of genes involved in carbohydrate metabolism, stress response, and chemotaxis, with different patterns of up- or down-regulation in co-culture with different cyanobacterial strains. Gene transcription patterns of organic and inorganic nutrient transporter and catabolism genes in EZ55 suggested resources available in the culture media were altered under elevated (800 ppm) pCO2 conditions. Altogether, changing transcription patterns were consistent with the possibility that the composition of cyanobacterial excretions changed under the two pCO2 regimes, causing extensive ecophysiological changes in both members of the co-cultures. Additionally, significant downregulation of oxidative stress genes in MIT9312/EZ55 cocultures at 800 ppm pCO2 were consistent with a link between the predicted reduced availability of photorespiratory byproducts (i.e., glycolate/2PG) under this condition and observed reductions in internal oxidative stress loads for EZ55, providing a possible explanation for the previously observed lack of “help” provided by EZ55 to MIT9312 under elevated pCO2. If similar broad alterations in microbial ecophysiology occur in the ocean as atmospheric pCO2 increases, they could lead to substantially altered ecosystem functioning and community composition. 
    more » « less
  4. Pipelines for transcriptome analyses conducted as part of "Community context and pCO2 impact the transcriptome of the "helper" bacterium Alteromonas in co-culture with picocyanobacteria" (Barreto Filho et al., 2022). The provided code, documentation, input and output files include all the information needed to replicate our findings. The following results abstract describes these data along with related datasets which can be accessed from the "Related Datasets" section of this page. Many microbial photoautotrophs depend on heterotrophic bacteria for accomplishing essential functions. Environmental changes, however, could alter or eliminate such interactions. We investigated the effects of changing pCO2 on gene expression in co-cultures of 3 strains of picocyanobacteria (Synechococcus strains CC9311 and WH8102 and Prochlorococcus strain MIT9312) paired with the ‘helper’ bacterium Alteromonas macleodii EZ55. Co-culture with cyanobacteria resulted in a much higher number of up- and down-regulated genes in EZ55 than pCO2 by itself. Pathway analysis revealed significantly different expression of genes involved in carbohydrate metabolism, stress response, and chemotaxis, with different patterns of up- or down-regulation in co-culture with different cyanobacterial strains. Gene expression patterns of organic and inorganic nutrient transporter and catabolism genes in EZ55 suggested resources available in the culture media were altered under elevated (800 ppm) pCO2 conditions. Altogether, changing expression patterns were consistent with the possibility that the composition of cyanobacterial excretions changed under the two pCO2 regimes, causing extensive ecophysiological changes in both members of the co-cultures. Additionally, significant downregulation of oxidative stress genes in MIT9312/EZ55 cocultures at 800 ppm pCO2 were consistent with a link between the predicted reduced availability of photorespiratory byproducts (i.e., glycolate/2PG) under this condition and observed reductions in internal oxidative stress loads for EZ55, providing a possible explanation for the previously observed lack of “help” provided by EZ55 to MIT9312 under elevated pCO2. The data and code stored in this archive will allow the reconstruction of our analysis pipelines. Additionally, we provide annotation mapping files and other resources for conducting transcriptomic analyses with Alteromonas sp. EZ55. 
    more » « less
  5. Synechococcus (WH8102 and CC9311) growth and genetic sequence accessions from experiments with variable pCO2 treatments. These data were produced as part of a study of the "Community context and pCO2 impact the transcriptome of the "helper" bacterium Alteromonas in co-culture with picocyanobacteria" (Barreto Filho et al., 2022). Sequences files are accessible from the National Center for Biotechnology Information (BioProject PRJNA377729). The following results abstract describes these data along with related datasets which can be accessed from the "Related Datasets" section of this page. Many microbial photoautotrophs depend on heterotrophic bacteria for accomplishing essential functions. Environmental changes, however, could alter or eliminate such interactions. We investigated the effects of changing pCO2 on gene expression in co-cultures of 3 strains of picocyanobacteria (Synechococcus strains CC9311 and WH8102 and Prochlorococcus strain MIT9312) paired with the ‘helper’ bacterium Alteromonas macleodii EZ55. Co-culture with cyanobacteria resulted in a much higher number of up- and down-regulated genes in EZ55 than pCO2 by itself. Pathway analysis revealed significantly different expression of genes involved in carbohydrate metabolism, stress response, and chemotaxis, with different patterns of up- or down-regulation in co-culture with different cyanobacterial strains. Gene expression patterns of organic and inorganic nutrient transporter and catabolism genes in EZ55 suggested resources available in the culture media were altered under elevated (800 ppm) pCO2 conditions. Altogether, changing expression patterns were consistent with the possibility that the composition of cyanobacterial excretions changed under the two pCO2 regimes, causing extensive ecophysiological changes in both members of the co-cultures. Additionally, significant downregulation of oxidative stress genes inMIT9312/EZ55 cocultures at 800 ppm pCO2 were consistent with a link between the predicted reduced availability of photorespiratory byproducts (i.e., glycolate/2PG) under this condition and observed reductions in internal oxidative stress loads for EZ55, providing a possible explanation for the previously observed lack of “help” provided by EZ55 to MIT9312 under elevated pCO2. The data and code stored in this archive will allow the reconstruction of our analysis pipelines. Additionally, we provide annotation mapping files and other resources for conducting transcriptomic analyses with Alteromonas sp. EZ55. 
    more » « less