skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vitamin B12 conveys a protective advantage to phycosphere-associated bacteria at high temperatures
Abstract Many marine microbes require vitamin B12 (cobalamin) but are unable to synthesize it, necessitating reliance on other B12-producing microbes. Thus, phytoplankton and bacterioplankton community dynamics can partially depend on the production and release of a limiting resource by members of the same community. We tested the impact of temperature and B12 availability on the growth of two bacterial taxa commonly associated with phytoplankton: Ruegeria pomeroyi, which produces B12 and fulfills the B12 requirements of some phytoplankton, and Alteromonas macleodii, which does not produce B12 but also does not strictly require it for growth. For B12-producing R. pomeroyi, we further tested how temperature influences B12 production and release. Access to B12 significantly increased growth rates of both species at the highest temperatures tested (38 °C for R. pomeroyi, 40 °C for A. macleodii) and A. macleodii biomass was significantly reduced when grown at high temperatures without B12, indicating that B12 is protective at high temperatures. Moreover, R. pomeroyi produced more B12 at warmer temperatures but did not release detectable amounts of B12 at any temperature tested. Results imply that increasing temperatures and more frequent marine heatwaves with climate change will influence microbial B12 dynamics and could interrupt symbiotic resource sharing.  more » « less
Award ID(s):
2023192
PAR ID:
10446944
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
ISME Communications
Volume:
3
Issue:
1
ISSN:
2730-6151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A complex interplay of environmental variables impacts phytoplankton community composition and physiology. Temperature and nutrient availability are two principal factors driving phytoplankton growth and composition, but are often investigated independently and on individual species in the laboratory. To assess the individual and interactive effects of temperature and nutrient concentration on phytoplankton community composition and physiology, we altered both the thermal and nutrient conditions of a cold‐adapted spring phytoplankton community in Narragansett Bay, Rhode Island, when surface temperature was 2.6°C and chlorophyll > 9 μg L−1. Water was incubated in triplicate at −0.5°C, 2.6°C, and 6°C for 10 d. At each temperature, treatments included both nutrient amendments (N, P, Si addition) and controls (no macronutrients added). The interactive effects of temperature and resource availability altered phytoplankton growth and community structure. Nutrient amendments resulted in species sorting and communities dominated by larger species. Under replete nutrients, warming tripled phytoplankton growth rates, but under in situ nutrient conditions, increased temperature acted antagonistically, reducing growth rates by as much as 33%, suggesting communities became nutrient limited. The temperature–nutrient interplay shifted the relative proportions of each species within the phytoplankton community, resulting in more silica rich cells at decreasing temperatures, irrespective of nutrients, and C : N that varied based on resource availability, with nutrient limitation inducing a 47% increase in C : N at increasing temperatures. Our results illustrate how the temperature–nutrient interplay can alter phytoplankton community dynamics, with changes in temperature amplifying or exacerbating the nutrient effect with implications for higher trophic levels and carbon flux. 
    more » « less
  2. To assess protistan grazing impact and temperature sensitivity on plankton population dynamics, we measured bulk and species-specific phytoplankton growth and herbivorous protist grazing rates in Disko Bay, West Greenland in April-May 2011. Rate estimates were made at three different temperatures in situ (0 °C), +3 °C and +6 °C over ambient. In situ Chlorophyll a (Chl a ) doubled during the observation period to ∼12  µg Chl a L −1 , with 60–97% of Chl a in the >20 µm size-fraction dominated by the diatom genus Chaetoceros. Herbivorous dinoflagellates comprised 60–80% of microplankton grazer biomass. At in situ temperatures, phytoplankton growth or grazing by herbivorous predators <200 µm was not measurable until 11 days after observations commenced. Thereafter, phytoplankton growth was on average 0.25 d −1 . Phytoplankton mortality due to herbivorous grazing was only measured on three occasions but the magnitude was substantial, up to 0.58 d −1 . Grazing of this magnitude removed ∼100% of primary production. In short-term temperature-shift incubation experiments, phytoplankton growth rate increased significantly (20%) at elevated temperatures. In contrast, herbivorous protist grazing and species-specific growth rates decreased significantly (50%) at +6 °C. This differential response in phytoplankton and herbivores to temperature increases resulted in a decrease of primary production removed with increasing temperature. Phaeocystis spp. abundance was negatively correlated with bulk grazing rate. Growth and grazing rates were variable but showed no evidence of an inherent, low temperature limitation. Herbivorous protist growth rates in this study and in a literature review were comparable to rates from temperate waters. Thus, an inherent physiological inhibition of protistan growth or grazing rates in polar waters is not supported by the data. The large variability between lack of grazing and high rates of primary production removal observed here and confirmed in the literature for polar waters implies larger amplitude fluctuations in phytoplankton biomass than slower, steady grazing losses of primary production. 
    more » « less
  3. Abstract The heterotrophic marine bacterium,Ruegeria pomeroyi, was experimentally cultured under environmentally realistic carbon conditions and with a tracer-level addition of13C-labeled leucine to track bacterial protein biosynthesis through growth phases. A combination of methods allowed observation of real-time bacterial protein production to understand metabolic priorities through the different growth phases. Over 2000 proteins were identified in each experimental culture from exponential and stationary growth phases. Within two hours of the13C-labeled leucine addition,R.pomeroyisignificantly assimilated the newly encountered substrate into new proteins. This dataset provides a fundamental baseline for understanding growth phase differences in molecular physiology of a cosmopolitan marine bacterium. 
    more » « less
  4. Todgham, Anne (Ed.)
    Abstract Environmental contamination of bisphenol A (BPA) is a widespread and multifaceted issue with vast ecological, social and economic consequences. Thus, understanding how local environmental conditions, such as temperature, interact with BPA to affect populations and community dynamics remain important areas of research. Here, we conduct laboratory experiments aimed at understanding how environmental gradients of both temperature and BPA concentration influence freshwater phytoplankton population growth and community structure. We exposed phytoplankton assemblages comprised of three common species of green algae (Chlorella vulgaris, Ankistrodesmus braunii and Scenedesmus quadricauda) as well as isolates of each individual species to three BPA concentrations (0, 2, 13 mg/L BPA) and three temperatures (18, 23, 27°C) monitoring population growth and community structure (via biovolume). We observed antagonistic interactions between BPA and warmer temperatures, such that when warmer temperatures decreased growth (observed with A. braunii), high concentrations of BPA elevated growth at these warm temperatures; however, when warmer temperatures increased growth (C. vulgaris, S. quadricauda), high BPA concentrations diminished these gains. Although BPA exposure inhibited the growth of most C. vulgaris populations, growth was not reduced in A. braunii or S. quadricauda populations exposed to 2 mg/L BPA. Phytoplankton assemblage evenness (Pielou evenness index) decreased as BPA concentration increased and was consistently lowest under 27°C. Community composition was similar in assemblages cultured under 0 and 2 mg/L BPA under 18 and 23°C but was most similar between assemblages cultured under 2 and 13 mg/L BPA under 27°C. These results indicate that local environmental temperatures can mediate the consequences of BPA for freshwater phytoplankton growth rates and community structure and that BPA can diminish potential gains of increased growth rate for warm-adapted phytoplankton species at high environmental temperatures. 
    more » « less
  5. Abstract Temperature effects on the fatty acid (FA) profiles of phytoplankton, major primary producers in the ocean, have been widely studied due to their importance as industrial feedstocks and to their indispensable role as global producers of long‐chain, polyunsaturated FA (PUFA), including omega‐3 (ω3) FA required by organisms at higher trophic levels. The latter is of global ecological concern for marine food webs, as some evidence suggests an ongoing decline in global marine‐derived ω3 FA due to both a global decline in phytoplankton abundance and to a physiological reduction in ω3 production by phytoplankton as temperatures rise. Here, we examined both short‐term (physiological) and long‐term (evolutionary) responses of FA profiles to temperature by comparing FA thermal reaction norms of the marine diatomThalassiosira pseudonanaafter ~500 generations (ca. 2.5 years) of experimental evolution at low (16°C) and high (31°C) temperatures. We showed that thermal reaction norms for some key FA classes evolved rapidly in response to temperature selection, often in ways contrary to our predictions based on prior research. Notably, 31°C‐selected populations showed higher PUFA percentages (including ω3 FA) than 16°C‐selected populations at the highest assay temperature (31°C, aboveT. pseudonana'soptimum temperature for population growth), suggesting that high‐temperature selection led to an evolved ability to sustain high PUFA production at high temperatures. Rapid evolution may therefore mitigate some of the decline in global phytoplankton‐derived ω3 FA production predicted by recent studies. Beyond its implications for marine food webs, knowledge of the effects of temperature on fatty acid profiles is of fundamental importance to our understanding of the mechanistic causes and consequences of thermal adaptation. 
    more » « less