Abstract We consider one-dimensional quasi-periodic Schrödinger operators with analytic potentials. In the positive Lyapunov exponent regime, we prove large deviation estimates, which lead to refined Hölder continuity of the Lyapunov exponents and the integrated density of states, in both small Lyapunov exponent and large coupling regimes. Our results cover all the Diophantine frequencies and some Liouville frequencies.
more »
« less
Schrödinger operators with potentials generated by hyperbolic transformations: I—positivity of the Lyapunov exponent
Abstract We consider discrete one-dimensional Schrödinger operators whose potentials are generated by sampling along the orbits of a general hyperbolic transformation. Specifically, we show that if the sampling function is a non-constant Hölder continuous function defined on a subshift of finite type with a fully supported ergodic measure admitting a local product structure and a fixed point, then the Lyapunov exponent is positive away from a discrete set of energies. Moreover, for sampling functions in a residual subset of the space of Hölder continuous functions, the Lyapunov exponent is positive everywhere. If we consider locally constant or globally fiber bunched sampling functions, then the Lyapuonv exponent is positive away from a finite set. Moreover, for sampling functions in an open and dense subset of the space in question, the Lyapunov exponent is uniformly positive. Our results can be applied to any subshift of finite type with ergodic measures that are equilibrium states of Hölder continuous potentials. In particular, we apply our results to Schrödinger operators defined over expanding maps on the unit circle, hyperbolic automorphisms of a finite-dimensional torus, and Markov chains.
more »
« less
- Award ID(s):
- 2054752
- NSF-PAR ID:
- 10432007
- Date Published:
- Journal Name:
- Inventiones mathematicae
- Volume:
- 231
- Issue:
- 2
- ISSN:
- 0020-9910
- Page Range / eLocation ID:
- 851 to 927
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract We initiate the study of Schrödinger operators with ergodic potentials defined over circle map dynamics, in particular over circle diffeomorphisms. For analytic circle diffeomorphisms and a set of rotation numbers satisfying Yoccoz’s ${{\mathcal{H}}}$ arithmetic condition, we discuss an extension of Avila’s global theory. We also give an abstract version and a short proof of a sharp Gordon-type theorem on the absence of eigenvalues for general potentials with repetitions. Coupled with the dynamical analysis, we obtain that, for every $C^{1+BV}$ circle diffeomorphism, with a super Liouville rotation number and an invariant measure $\mu $, and for $\mu $-almost all $x\in{{\mathbb{T}}}^1$, the corresponding Schrödinger operator has purely continuous spectrum for every Hölder continuous potential $V$.more » « less
-
We consider one-dimensional quasi-periodic Schr\"odinger operators with analytic potentials. In the positive Lyapunov exponent regime, we prove large deviation estimates which lead to refined H\"older continuity of the Lyapunov exponents and the integrated density of states, in both small Lyapunov exponent and large coupling regimes. Our results cover all the Diophantine frequencies and some Liouville frequencies.more » « less
-
We prove a conditional theorem on the positivity of the Lyapunov exponent for a Schrödinger cocycle over a skew-shift base with a cosine potential and the golden ratio as frequency. For coupling below $1$ , which is the threshold for Herman’s subharmonicity trick, we formulate three conditions on the Lyapunov exponent in a finite but large volume and on the associated large-deviation estimates at that scale. Our main results demonstrate that these finite-size conditions imply the positivity of the infinite-volume Lyapunov exponent. This paper shows that it is possible to make the techniques developed for the study of Schrödinger operators with deterministic potentials, based on large-deviation estimates and the avalanche principle, effective.more » « less
-
We consider the top Lyapunov exponent associated to a dissipative linear evolution equation posed on a separable Hilbert or Banach space. In many applications in partial differential equations, such equations are often posed on a scale of nonequivalent spaces mitigating, e.g., integrability (L^p) or differentiability (W^{s,p}). In contrast to finite dimensions, the Lyapunov exponent could a priori depend on the choice of norm used. In this paper we show that under quite general conditions, the Lyapunov exponent of a cocycle of compact linear operators is independent of the norm used. We apply this result to two important problems from fluid mechanics: the enhanced dissipation rate for the advection diffusion equation with ergodic velocity field; and the Lyapunov exponent for the 2d Navier–Stokes equations with stochastic or periodic forcing.more » « less