skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Galactic chemical evolution of phosphorus observed with IGRINS
Context. Phosphorus (P) is considered to be one of the key elements for life, making it an important element to look for in the abundance analysis of spectra of stellar systems. Yet, only a select number of spectroscopic studies exist to estimate the phosphorus abundances and investigate its trend across a range of metallicities. This is due to the lack of good phosphorus lines in the optical wavelength region and the requirement of careful manual analysis of the blended phosphorus lines in near-infrared H-band spectra obtained with individual observations and surveys such as the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Aims. Based on a consistent and systematic analysis of high-resolution, near-infrared Immersion GRating INfrared Spectrograph (IGRINS) spectra of 38 K giant stars in the Solar neighborhood, we present and investigate the phosphorus abundance trend in the metallicity range of −1.2 dex < [Fe/H] < 0.4 dex. Furthermore, we compare this trend with the available chemical evolution models to shed some light on the origin and evolution of phosphorus. Methods. We have observed full H - and K -band spectra at a spectral resolving power of R = 45 000 with IGRINS mounted on the Gemini South telescope, the Discovery Channel Telescope, and the Harlan J Smith Telescope at McDonald Observatory. Abundances were determined from spectral lines by modeling the synthetic spectrum that best matches the observed spectrum by χ 2 minimization. For this task, we used the Spectroscopy Made Easy (SME) tool in combination with one-dimensional (1D) Model Atmospheres in a Radiative and Convective Scheme (MARCS) stellar atmosphere models. The investigated sample of stars have reliable stellar parameters estimated using optical FIber-fed Echelle Spectrograph (FIES) spectra obtained in a previous study of a set of stars called Giants in the Local Disk (GILD). In order to determine the phosphorus abundances from the 16482.92 Å phosphorus line, we needed to take special care blending the CO( v = 7−4) line. With the stellar parameters known, we thus determined the C, N, and O abundances from atomic carbon and a range of nonblended molecular lines (CO, CN, and OH) which are plentiful in the H-band region of K giant stars, assuring an appropriate modeling of the blending CO( v = 7−4) line. Results. We present the [P/Fe] versus [Fe/H] trend for K giant stars in the metallicity range of −1.2 dex < [Fe/H] < 0.4 dex and enhanced phosphorus abundances for two metal-poor s-rich stars. We find that our trend matches well with the compiled literature sample of prominently dwarf stars and the limited number of giant stars. Our trend is found to be higher by ~0.05−0.1 dex compared to the theoretical chemical evolution trend resulting from the core collapse supernova (type II) of massive stars with the phosphorus yields arbitrarily increased by a factor of 2.75. Thus the enhancement factor might need to be ~0.05−0.1 dex higher to match our trend. We also find an empirically determined primary behavior for phosphorus. Furthermore, the phosphorus abundance is found to be elevated by ~0.6−0.9 dex in the two s-enriched stars compared to the theoretical chemical evolution trend.  more » « less
Award ID(s):
1908892
PAR ID:
10432181
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
668
ISSN:
0004-6361
Page Range / eLocation ID:
A88
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. Cool stars, such as M giants, can only be analyzed in the near-infrared (NIR) regime due to the ubiquitous titanium oxide features in optical spectra of stars with T eff  < 4000 K. In dust-obscured regions, the inner bulge and Galactic center region, the intrinsically bright M giants observed in the NIR are an optimal option for studying stellar abundances and the chemical evolution of stellar populations. Because of the uncertainties in photometric methods, a method for determining the stellar parameters for M giants from the NIR spectra themselves is needed. Aims. We develop a method for determining the stellar parameters for M giants from the NIR spectra. We validate the method by deriving the stellar parameters for nearby well-studied M giants with spectra from the spectral library of the Immersion GRating INfrared Spectrograph (IGRINS). We demonstrate the accuracy and precision of our method by determining the stellar parameters and α -element trends versus metallicity for solar neighborhood M giants. Methods. We carried out new observations of 44 M giant stars with IGRINS mounted on the Gemini South telescope. We also obtained the full H and K band IGRINS spectra of six nearby well-studied M giants at a spectral resolving power of R  = 45 000 from the IGRINS spectral library. We used the tool called spectroscopy made easy in combination with one-dimensional (1D) model atmospheres in a radiative and convective scheme (MARCS) stellar atmosphere models to model the synthetic spectrum that fits the observed spectrum best. Results. The effective temperatures that we derive from our new method (tested for 3400 ≲  T eff  ≲ 4000 K here) agree excellently with those of the six nearby well-studied M giants, which indicates that the accuracy is indeed high. For the 43 solar neighborhood M giants, our T eff , log g , [Fe/H], ξ micro , [C/Fe], [N/Fe], and [O/Fe] agree with APOGEE with mean differences and a scatter (our method – APOGEE) of −67±33 K, −0.31±0.15 dex, 0.02±0.05 dex, 0.22±0.13 km s −1 , −0.05±0.06 dex, 0.06±0.06 dex, and 0.02±0.09 dex, respectively. Furthermore, the tight offset with a small dispersion compared to the APOGEE T eff indicates a high precision in our derived temperatures and those derived from the APOGEE pipeline. The typical uncertainties in the stellar parameters are found to be ±100 K in T eff , ±0.2 dex in log g , ±0.1 dex in [Fe/H], and ±0.1 km s −1 in ξ micro . The α -element trends versus metallicity for Mg, Si, Ca, and Ti are consistent with the APOGEE DR17 trends for the same stars and with the GILD optical trends. We also find a clear enhancement in the abundances for thick-disk stars. 
    more » « less
  2. Abstract Individual chemical abundances for 14 elements (C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are derived for a sample of M dwarfs using high-resolution, near-infrared H -band spectra from the Sloan Digital Sky Survey-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The quantitative analysis included synthetic spectra computed with 1D LTE plane-parallel MARCS models using the APOGEE Data Release 17 line list to determine chemical abundances. The sample consists of 11 M dwarfs in binary systems with warmer FGK dwarf primaries and 10 measured interferometric angular diameters. To minimize atomic diffusion effects, [X/Fe] ratios are used to compare M dwarfs in binary systems and literature results for their warmer primary stars, indicating good agreement (<0.08 dex) for all studied elements. The mean abundance difference in primaries minus this work’s M dwarfs is −0.05 ± 0.03 dex. It indicates that M dwarfs in binary systems are a reliable way to calibrate empirical relationships. A comparison with abundance, effective temperature, and surface gravity results from the APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) Data Release 16 finds a systematic offset of [M/H], T eff , log g = +0.21 dex, −50 K, and 0.30 dex, respectively, although ASPCAP [X/Fe] ratios are generally consistent with this study. The metallicities of the M dwarfs cover the range of [Fe/H] = −0.9 to +0.4 and are used to investigate Galactic chemical evolution via trends of [X/Fe] as a function of [Fe/H]. The behavior of the various elemental abundances [X/Fe] versus [Fe/H] agrees well with the corresponding trends derived from warmer FGK dwarfs, demonstrating that the APOGEE spectra can be used to examine Galactic chemical evolution using large samples of selected M dwarfs. 
    more » « less
  3. Aims. An analysis of the methylidyne (CH) radical in non-local thermodynamic equilibrium (NLTE) is performed for the physical conditions of cool stellar atmospheres typical of red giants (log ɡ = 2.0, T eff = 4500 K) and the Sun. The aim of the present work is to explore whether the G band of the CH molecule, which is commonly used in abundance diagnostics of carbon-enhanced metal-poor stars, is sensitive to NLTE effects. Methods. LTE and NLTE theoretical spectra were computed with the MULTI code. We used one-dimensional (1D) LTE hydrostatic MARCS model atmospheres with parameters representing eleven red giant stars with metallicities ranging from [Fe/H] = −4.0 to [Fe/H] = 0.0 and carbon-to-iron ratios of [C/Fe] = 0.0, +0.7, +1.5, and +3.0. The CH molecule model was represented by 1981 energy levels, 18 377 radiative bound-bound transitions, and 932 photo-dissociation reactions. The rates due to transitions caused by collisions with free electrons and hydrogen atoms were computed using classical recipes. Results. Our calculations suggest that NLTE effects in the statistical equilibrium of the CH molecule are significant and cannot be neglected for precision spectroscopic analysis of C abundances. The NLTE effects are mostly driven by radiative over-dissociation, owing to the very low dissociation threshold of the molecule and significant resonances in the photo-dissociation cross-sections. The NLTE effects in the G band increase with decreasing metallicity. When comparing the C abundances determined from the CH G band in LTE and in NLTE, we show that the C abundances are always under-estimated if LTE is assumed. The NLTE corrections to C abundance inferred from the CH feature range from +0.04 dex for the Sun to +0.21 dex for a red giant with metallicity [Fe/H] = −4.0. Conclusions. Departures from the LTE assumption in the CH molecule are non-negligible, and NLTE effects have to be taken into account in the diagnostic spectroscopy based on the CH lines. We show here that the NLTE effects in the optical CH lines are non-negligible for the Sun and red giant stars, but further calculations are warranted to investigate the effects in other regimes of stellar parameters. 
    more » « less
  4. ABSTRACT Understanding the assembly of our Galaxy requires us to also characterize the systems that helped build it. In this work, we accomplish this by exploring the chemistry of accreted halo stars from Gaia-Enceladus/Gaia-Sausage (GES) selected in the infrared from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16. We use high resolution optical spectra for 62 GES stars to measure abundances in 20 elements spanning the α, Fe-peak, light, odd-Z, and notably, the neutron-capture groups of elements to understand their trends in the context of and in contrast to the Milky Way and other stellar populations. Using these derived abundances we find that the optical and the infrared abundances agree to within 0.15 dex except for O, Co, Na, Cu, and Ce. These stars have enhanced neutron-capture abundance trends compared to the Milky Way, and their [Eu/Mg] and neutron-capture abundance ratios (e.g. [Y/Eu], [Ba/Eu], [Zr/Ba], [La/Ba], and [Nd/Ba]) point to r-process enhancement and a delay in s-process enrichment. Their [α/Fe] trend is lower than the Milky Way trend for [Fe/H] > −1.5 dex, similar to previous studies of GES stars and consistent with the picture that these stars formed in a system with a lower rate of star formation. This is further supported by their depleted abundances in Ni, Na, and Cu abundances, again, similar to previous studies of low-α stars with accreted origins. 
    more » « less
  5. Abstract Silicon and strontium are key elements to explore the nucleosynthesis and chemical evolution of the Galaxy by measurements of very metal-poor stars. There are, however, only a few useful spectral lines of these elements in the optical range that are measurable for such low-metallicity stars. Here we report on abundances of these two elements determined from near-infrared high-resolution spectra obtained with the Subaru Telescope Infrared Doppler instrument. Si abundances are determined for as many as 26 Si lines for six very and extremely metal-poor stars (−4.0 < [Fe/H] < −1.5), which significantly improves the reliability of the abundance measurements. All six stars, including three carbon-enhanced objects, show over-abundances of Si ([Si/Fe] ∼ +0.5). Two stars with [Fe/H] ∼ −1.5 have relatively small over-abundances. The [Mg/Si] ratios agree with the solar value, except for one metal-poor star with carbon excess. Strontium abundances are determined from the triplet lines for four stars, including two for the first time. The consistency of the Sr abundances determined from near-infrared and optical spectra require further examination from additional observations. 
    more » « less