skip to main content

Title: Silicon and strontium abundances of very metal-poor stars determined from near-infrared spectra
Abstract

Silicon and strontium are key elements to explore the nucleosynthesis and chemical evolution of the Galaxy by measurements of very metal-poor stars. There are, however, only a few useful spectral lines of these elements in the optical range that are measurable for such low-metallicity stars. Here we report on abundances of these two elements determined from near-infrared high-resolution spectra obtained with the Subaru Telescope Infrared Doppler instrument. Si abundances are determined for as many as 26 Si lines for six very and extremely metal-poor stars (−4.0 < [Fe/H] < −1.5), which significantly improves the reliability of the abundance measurements. All six stars, including three carbon-enhanced objects, show over-abundances of Si ([Si/Fe] ∼ +0.5). Two stars with [Fe/H] ∼ −1.5 have relatively small over-abundances. The [Mg/Si] ratios agree with the solar value, except for one metal-poor star with carbon excess. Strontium abundances are determined from the triplet lines for four stars, including two for the first time. The consistency of the Sr abundances determined from near-infrared and optical spectra require further examination from additional observations.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Award ID(s):
1927130
Publication Date:
NSF-PAR ID:
10365176
Journal Name:
Publications of the Astronomical Society of Japan
Volume:
74
Issue:
2
Page Range or eLocation-ID:
p. 273-282
ISSN:
0004-6264
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present a detailed near-infrared chemical abundance analysis of 10 red giant members of the Galactic open cluster NGC 752. High-resolution (R ≃ 45000) near-infrared spectral data were gathered with the Immersion Grating Infrared Spectrograph, providing simultaneous coverage of the complete H and K bands. We derived the abundances of H-burning (C, N, O), α (Mg, Si, S, Ca), light odd-Z (Na, Al, P, K), Fe-group (Sc, Ti, Cr, Fe, Co, Ni), and neutron-capture (Ce, Nd, Yb) elements. We report the abundances of S, P, K, Ce, and Yb in NGC 752 for the first time. Our analysis yields solar-metallicity and solar abundance ratios for almost all of the elements heavier than the CNO group in NGC 752. O and N abundances were measured from a number of OH and CN features in the H band, and C abundances were determined mainly from CO molecular lines in the K band. High-excitation $\rm{C\,\small {I}}$ lines present in both near-infrared and optical spectra were also included in the C abundance determinations. Carbon isotopic ratios were derived from the R-branch band heads of first overtone (2−0) and (3−1) 12CO and (2−0) 13CO lines near 23 440 Å and (3−1) 13CO lines at about 23 730 Å. The CNOmore »abundances and 12C/13C ratios are all consistent with our giants having completed ‘first dredge-up’ envelope mixing of CN-cyle products. We independently assessed NGC 752 stellar membership from Gaia astrometry, leading to a new colour–magnitude diagram for this cluster. Applications of Victoria isochrones and MESA models to these data yield an updated NGC 752 cluster age (1.52 Gyr) and evolutionary stage indications for the programme stars. The photometric evidence and spectroscopic light element abundances all suggest that the most, perhaps all of the programme stars are members of the helium-burning red clump in this cluster.

    « less
  2. Context. NGC 6522 is a moderately metal-poor bulge globular cluster ([Fe/H]∼−1.0), and it is a well-studied representative among a number of moderately metal-poor blue horizontal branch clusters located in the bulge. The NGC 6522 abundance pattern can give hints on the earliest chemical enrichment in the central Galaxy. Aims. The aim of this study is to derive abundances of the light elements C and N; alpha elements O, Mg, Si, Ca, and Ti; odd-Z elements Na and Al; neutron-capture elements Y, Zr, Ba, La, and Nd; and the r-process element Eu. We verify if there are first- and second-generation stars: we find clear evidence of Na-Al, Na-N, and Mg-Al correlations, while we cannot identify the Na-O anti-correlation from our data. Methods. High-resolution spectra of six red giants in the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with both the UVES and GIRAFFE spectrographs in FLAMES+UVES configuration. In light of Gaia data, it turned out that two of them are non-members, but these were also analysed. Spectroscopic parameters were derived through the excitation and ionisation equilibrium of Fe i and Fe ii lines from UVES spectra. The abundances were obtained with spectrum synthesis. Comparisons ofmore »abundances derived from UVES and GIRAFFE spectra were carried out. Results. The present analysis combined with previous UVES results gives a mean radial velocity of vhel = −15.62±7.7 km s−1 and a r metallicity of [Fe/H] = −1.05±0.20 for NGC 6522. Mean abundances of alpha elements for the present four member stars are enhanced with [O/Fe]=+0.38, [Mg/Fe]=≈+0.28, [Si/Fe]≈+0.19, and [Ca/Fe]≈+0.13, together with the iron-peak element [Ti/Fe]≈+0.13, and the r-process element [Eu/Fe]=+0.40. The neutron-capture elements Y, Zr, Ba, and La show enhancements in the +0.08 < [Y/Fe] < +0.90, 0.11 < [Zr/Fe] < +0.50, 0.00 < [Ba/Fe] < +0.63, 0.00 < [La/Fe] < +0.45, and -0.10 < [Nd/Fe] < +0.70 ranges. We also discuss the spread in heavy-element abundances.« less
  3. Context. NGC 6522 is a moderately metal-poor bulge globular cluster ([Fe/H] ~ −1.0), and it is a well-studied representative among a number of moderately metal-poor blue horizontal branch clusters located in the bulge. The NGC 6522 abundance pattern can give hints on the earliest chemical enrichment in the central Galaxy. Aims. The aim of this study is to derive abundances of the light elements C and N; alpha elements O, Mg, Si, Ca, and Ti; odd-Z elements Na and Al; neutron-capture elements Y, Zr, Ba, La, and Nd; and the r -process element Eu. We verify if there are first- and second-generation stars: we find clear evidence of Na–Al, Na–N, and Mg–Al correlations, while we cannot identify the Na–O anti-correlation from our data. Methods. High-resolution spectra of six red giants in the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with both the UVES and GIRAFFE spectrographs in FLAMES+UVES configuration. In light of Gaia data, it turned out that two of them are non-members, but these were also analysed. Spectroscopic parameters were derived through the excitation and ionisation equilibrium of Fe  I and Fe  II lines from UVES spectra. The abundances were obtained with spectrummore »synthesis. Comparisons of abundances derived from UVES and GIRAFFE spectra were carried out. Results. The present analysis combined with previous UVES results gives a mean radial velocity of v r hel = −15.62±7.7 km s −1 and a metallicity of [Fe/H] = −1.05 ± 0.20 for NGC 6522. Mean abundances of alpha elements for the present four member stars are enhanced with [O/Fe] = +0.38, [Mg/Fe] = ≈+0.28, [Si/Fe] ≈ +0.19, and [Ca/Fe] ≈ +0.13, together with the iron-peak element [Ti/Fe] ≈ +0.13, and the r -process element [Eu/Fe] = +0.40. The neutron-capture elements Y, Zr, Ba, and La show enhancements in the +0.08 < [Y/Fe] < +0.90, 0.11 < [Zr/Fe] < +0.50, 0.00 < [Ba/Fe] < +0.63, 0.00 < [La/Fe] < +0.45, and −0.10 < [Nd/Fe] < +0.70 ranges. We also discuss the spread in heavy-element abundances.« less
  4. Abstract

    We present results from high-resolution (R∼ 40,000) spectroscopic observations of over 200 metal-poor stars, mostly selected from the RAVE survey, using the Southern African Large Telescope. We were able to derive stellar parameters for a total of 108 stars; an additional sample of 50 stars from this same effort was previously reported on by Rasmussen et al. Among our newly reported observations, we identify 84 very metal-poor (VMP; [Fe/H] < −2.0, 53 newly identified) stars and three extremely metal-poor (EMP; [Fe/H] < −3.0, one newly identified) stars. The elemental abundances were measured for carbon, as well as several otherα-elements (Mg, Ca, Sc, and Ti), iron-peak elements (Mn, Co, Ni, and Zn), and neutron-capture elements (Sr, Ba, and Eu). Based on these measurements, the stars are classified by their carbon and neutron-capture abundances into carbon-enhanced metal-poor (CEMP; [C/Fe] > +0.70), CEMP subclasses, and by the level of theirr-process abundances. A total of 17 are classified as CEMP stars. There are 11 CEMP-rstars (eight newly identified), one CEMP-sstar (newly identified), two possible CEMP-istars (one newly identified), and three CEMP-no stars (all newly identified) in this work. We found 11 stars (eight newly identified) that are strongly enhanced inr-process elements (r-II; [Eu/Fe]more »> +0.70), 38 stars (31 newly identified) that are moderately enhanced inr-process elements (r-I; +0.30 < [Eu/Fe] ≤ + 0.70), and one newly identified limited-rstar.

    « less
  5. Abstract

    Orbital characteristics based on Gaia Early Data Release 3 astrometric parameters are analyzed for ∼4000 metal-poor stars ([Fe/H] ≤ −0.8) compiled from the Best and Brightest survey. Selected as metal-poor candidates based on broadband near- and far-IR photometry, 43% of these stars had medium-resolution (1200 ≲R≲ 2000) validation spectra obtained over a 7 yr campaign from 2014 to 2020 with a variety of telescopes. The remaining stars were chosen based on photometric metallicity determinations from the Huang et al. recalibration of the Sky Mapper Southern Survey. Dynamical clusters of these stars are obtained from the orbital energy and cylindrical actions using theHDBSCANunsupervised learning algorithm. We identify 52 dynamically tagged groups (DTGs) with between five and 21 members; 18 DTGs have at least 10 member stars. Milky Way (MW) substructures such as Gaia-Sausage-Enceladus, the Metal-Weak Thick-Disk, Thamnos, the Splashed Disk, and the Helmi Stream are identified. Associations with MW globular clusters are determined for eight DTGs; no recognized MW dwarf galaxies were associated with any of our DTGs. Previously identified dynamical groups are also associated with our DTGs, with emphasis placed on their structural determination and possible new identifications. Chemically peculiar stars are identified as members of several DTGs, withmore »six DTGs that are associated withr-process-enhanced stars. We demonstrate that the mean carbon andα-element abundances of our DTGs are correlated with their mean metallicity in an understandable manner. Similarly, we find that the mean metallicity, carbon, andα-element abundances are separable into different regions of the mean rotational-velocity space.

    « less