skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrating Data Lake Tables
We have made tremendous strides in providing tools for data scientists to discover new tables useful for their analyses. But despite these advances, the proper integration of discovered tables has been under-explored. An interesting semantics for integration, called Full Disjunction, was proposed in the 1980's, but there has been little progress in using it for data science to integrate tables culled from data lakes. We provide ALITE, the first proposal for scalable integration of tables that may have been discovered using join, union or related table search. We empirically show that ALITE can outperform previous algorithms for computing the Full Disjunction. ALITE relaxes previous assumptions that tables share common attribute names (which completely determine the join columns), are complete (without null values), and have acyclic join patterns. To evaluate ALITE, we develop and share three new benchmarks for integration that use real data lake tables.  more » « less
Award ID(s):
1956096 1762268 2107248
PAR ID:
10432219
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
16
Issue:
4
ISSN:
2150-8097
Page Range / eLocation ID:
932 to 945
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. EDBT (Ed.)
    Data integration is an important step in any data science pipeline where the objective is to unify the information available in differ- ent datasets for comprehensive analysis. Full Disjunction, which is an associative extension of the outer join operator, has been shown to be an effective operator for integrating datasets. It fully preserves and combines the available information. Existing Full Disjunction algorithms only consider the equi-join scenario where only tuples having the same value on joining columns are integrated. This, however, does not realistically represent many realistic scenarios where datasets come from diverse sources with inconsistent values (e.g., synonyms, abbreviations, etc.) and with limited metadata. So, joining just on equal values severely limits the ability of Full Disjunction to fully combine datasets. Thus, in this work, we propose an extension of Full Disjunction to also account for “fuzzy” matches among tuples. We present a novel data-driven approach to enable the joining of approximate or fuzzy matches within Full Disjunction. Experimentally, we show that fuzzy Full Disjunction does not add significant time over- head over a state-of-the-art Full Disjunction implementation and also that it enhances the accuracy of a downstream data quality task. 
    more » « less
  2. We introduce the problem of Table Reclamation. Given a Source Table and a large table repository, reclamation finds a set of tables that, when integrated, reproduce the source table as closely as possible. Unlike query discovery problems like Query-by-Example or by-Target, Table Reclamation focuses on reclaiming the data in the Source Table as fully as possible using real tables that may be incomplete or inconsistent. To do this, we define a new measure of table similarity, called error-aware instance similarity, to measure how close a reclaimed table is to a Source Table, a measure grounded in instance similarity used in data exchange. Our search covers not only SELECT-PROJECT- JOIN queries, but integration queries with unions, outerjoins, and the unary operators subsumption and complementation that have been shown to be important in data integration and fusion. Using reclamation, a data scientist can understand if any tables in a repository can be used to exactly reclaim a tuple in the Source. If not, one can understand if this is due to differences in values or to incompleteness in the data. Our solution, Gen- T, performs table discovery to retrieve a set of candidate tables from the table repository, filters these down to a set of originating tables, then integrates these tables to reclaim the Source as closely as possible. We show that our solution, while approximate, is accurate, efficient and scalable in the size of the table repository with experiments on real data lakes containing up to 15K tables, where the average number of tuples varies from small (web tables) to extremely large (open data tables) up to 1M tuples. 
    more » « less
  3. Over the last decade, worst-case optimal join (WCOJ) algorithms have emerged as a new paradigm for one of the most fundamental challenges in query processing: computing joins efficiently. Such an algorithm can be asymptotically faster than traditional binary joins, all the while remaining simple to understand and implement. However, they have been found to be less efficient than the old paradigm, traditional binary join plans, on the typical acyclic queries found in practice. Some database systems that support WCOJ use a hybrid approach: use WCOJ to process the cyclic subparts of the query (if any), and rely on traditional binary joins otherwise. In this paper we propose a new framework, called Free Join, that unifies the two paradigms. We describe a new type of plan, a new data structure (which unifies the hash tables and tries used by the two paradigms), and a suite of optimization techniques. Our system, implemented in Rust, matches or outperforms both traditional binary joins and WCOJ on standard query benchmarks. 
    more » « less
  4. The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,873 new measurements from 758 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 118 reviews are many that are new or heavily revised, including a new review on Neutrinos in Cosmology. 
    more » « less
  5. null (Ed.)
    Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app. 
    more » « less