skip to main content


Title: Discourse Comprehension: A Question Answering Framework to Represent Sentence Connections
While there has been substantial progress in text comprehension through simple factoid question answering, more holistic comprehension of a discourse still presents a major challenge (Dunietz et al., 2020). Someone critically reflecting on a text as they read it will pose curiosity-driven, often open-ended questions, which reflect deep understanding of the content and require complex reasoning to answer (Ko et al., 2020; Westera et al., 2020). A key challenge in building and evaluating models for this type of discourse comprehension is the lack of annotated data, especially since collecting answers to such questions requires high cognitive load for annotators. This paper presents a novel paradigm that enables scalable data collection targeting the comprehension of news documents, viewing these questions through the lens of discourse. The resulting corpus, DCQA (Discourse Comprehension by Question Answering), captures both discourse and semantic links between sentences in the form of free-form, open-ended questions. On an evaluation set that we annotated on questions from Ko et al. (2020), we show that DCQA provides valuable supervision for answering open-ended questions. We additionally design pre-training methods utilizing existing question-answering resources, and use synthetic data to accommodate unanswerable questions.  more » « less
Award ID(s):
2145479 1850153
PAR ID:
10432252
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Page Range / eLocation ID:
11752 - 11764
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Automatic discourse processing is bottlenecked by data: current discourse formalisms pose highly demanding annotation tasks involving large taxonomies of discourse relations, making them inaccessible to lay annotators. This work instead adopts the linguistic framework of Questions Under Discussion (QUD) for discourse analysis and seeks to derive QUD structures automatically. QUD views each sentence as an answer to a question triggered in prior context; thus, we characterize relationships between sentences as free-form questions, in contrast to exhaustive fine-grained taxonomies. We develop the first-of-its-kind QUD parser that derives a dependency structure of questions over full documents, trained using a large, crowdsourced question-answering dataset DCQA (Ko et al., 2022). Human evaluation results show that QUD dependency parsing is possible for language models trained with this crowdsourced, generalizable annotation scheme. We illustrate how our QUD structure is distinct from RST trees, and demonstrate the utility of QUD analysis in the context of document simplification. Our findings show that QUD parsing is an appealing alternative for automatic discourse processing. 
    more » « less
  2. Work in computer vision and natural language processing involving images and text has been experiencing explosive growth over the past decade, with a particular boost coming from the neural network revolution. The present volume brings together five research articles from several different corners of the area: multilingual multimodal image description (Frank et al. ), multimodal machine translation (Madhyastha et al. , Frank et al. ), image caption generation (Madhyastha et al. , Tanti et al. ), visual scene understanding (Silberer et al. ), and multimodal learning of high-level attributes (Sorodoc et al. ). In this article, we touch upon all of these topics as we review work involving images and text under the three main headings of image description (Section 2), visually grounded referring expression generation (REG) and comprehension (Section 3), and visual question answering (VQA) (Section 4). 
    more » « less
  3. The recent explosion in question answering research produced a wealth of both factoid reading comprehension (RC) and commonsense reasoning datasets. Combining them presents a different kind of task: deciding not simply whether information is present in the text, but also whether a confident guess could be made for the missing information. We present QuAIL, the first RC dataset to combine text-based, world knowledge and unanswerable questions, and to provide question type annotation that would enable diagnostics of the reasoning strategies by a given QA system. QuAIL contains 15K multi-choice questions for 800 texts in 4 domains. Crucially, it offers both general and text-specific questions, unlikely to be found in pretraining data. We show that QuAIL poses substantial challenges to the current state-of-the-art systems, with a 30% drop in accuracy compared to the most similar existing dataset. 
    more » « less
  4. Questions Under Discussion (QUD) is a versatile linguistic framework in which discourse progresses as continuously asking questions and answering them. Automatic parsing of a discourse to produce a QUD structure thus entails a complex question generation task: given a document and an answer sentence, generate a question that satisfies linguistic constraints of QUD and can be grounded in an anchor sentence in prior context. These questions are known to be curiosity-driven and open-ended. This work introduces the first framework for the automatic evaluation of QUD parsing, instantiating the theoretical constraints of QUD in a concrete protocol. We present QUDeval, a dataset of fine-grained evaluation of 2,190 QUD questions generated from both fine-tuned systems and LLMs. Using QUDeval, we show that satisfying all constraints of QUD is still challenging for modern LLMs, and that existing evaluation metrics poorly approximate parser quality. Encouragingly, human-authored QUDs are scored highly by our human evaluators, suggesting that there is headroom for further progress on language modeling to improve both QUD parsing and QUD evaluation. 
    more » « less
  5. null (Ed.)
    Most existing research on visual question answering (VQA) is limited to information explicitly present in an image or a video. In this paper, we take visual understanding to a higher level where systems are challenged to answer questions that involve mentally simulating the hypothetical consequences of performing specific actions in a given scenario. Towards that end, we formulate a vision-language question answering task based on the CLEVR (Johnson et. al., 2017) dataset. We then modify the best existing VQA methods and propose baseline solvers for this task. Finally, we motivate the development of better vision-language models by providing insights about the capability of diverse architectures to perform joint reasoning over image-text modality. Our dataset setup scripts and codes will be made publicly available at https://github.com/shailaja183/clevr_hyp. 
    more » « less