skip to main content


Title: Low Fouling Nanostructured Cellulose Membranes for Ultrafiltration in Wastewater Treatment
Ultrafiltration (UF) is a common technique used in wastewater treatments. However, the issue of membrane fouling in UF can greatly hinder the effectiveness of the treatments. This study demonstrated a low-fouling composite cellulose membrane system based on microfibrillated cellulose (MFC) and silica nanoparticle additives. The incorporation of ‘non-spherical’ silica nanoparticles was found to exhibit better structural integration in the membrane (i.e., minimal aggregation of silica nanoparticles in the membrane scaffold) as compared to spherical silica. The resulting composite membranes were tested for UF using local wastewater, where the best-performing membrane exhibited higher permeation flux than commercial polyvinylidene difluoride (PVDF) and polyether sulfone (PES) membranes while maintaining a high separation efficiency (~99.6%) and good flux recovery ratio (>90%). The analysis of the fouling behavior using different models suggested that the processes of cake layer formation and pore-constriction were probably two dominant fouling mechanisms, likely due to the presence of humic substances in wastewater. The demonstrated cellulose composite membrane system showed low-fouling and high restoration capability by a simple hydraulic cleaning method due to the super hydrophilic nature of the cellulose scaffold containing silica nanoparticles.  more » « less
Award ID(s):
2216585
NSF-PAR ID:
10432289
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Membranes
Volume:
13
Issue:
2
ISSN:
2077-0375
Page Range / eLocation ID:
147
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Membrane-based separation technologies are the cornerstone of remediating unconventional water sources, including brackish and industrial or municipal wastewater, as they are relatively energy-efficient and versatile. However, membrane fouling by dissolved and suspended substances in the feed stream remains a primary challenge that currently prevents these membranes from being used in real practices. Thus, we directly address this challenge by applying a superhydrophilic and oleophobic coating to a commercial membrane surface which can be utilized to separate and desalinate an oil and saline water mixture, in addition to photocatalytically degrading the organic substances. We fabricated the photocatalytic membrane by coating a commercial membrane with an ultraviolet (UV) light-curable adhesive. Then, we sprayed it with a mixture of photocatalytic nitrogen-doped titania (N-TiO2) and perfluoro silane-grafted silica (F-SiO2) nanoparticles. The membrane was placed under a UV light, which resulted in a chemically heterogeneous surface with intercalating high and low surface energy regions (i.e., N-TiO2 and F-SiO2, respectively) that were securely bound to the commercial membrane surface. We demonstrated that the coated membrane could be utilized for continuous separation and desalination of an oil–saline water mixture and for simultaneous photocatalytic degradation of the organic substances adsorbed on the membrane surface upon visible light irradiation. 
    more » « less
  2. Abstract

    Desalination by membrane distillation (MD) using low‐grade or waste heat provides a potential route for sustainable water supply. Nonwetting, porous membranes that provide a selective pathway for water vapor over nonvolatile salt are at the core of MD desalination. Conventional water‐repelling MD membranes (i.e., hydrophobic and superhydrophobic membranes) fail to ensure long‐term desalination performance due to pore wetting and surface fouling. To address these challenges, a defect‐free carbon nanotube forest (CNTF) is engineered in situ on a porous electrospun silica fiber substrate. The engineered CNTF forms an ultrarough and porous interface structure, allowing outstanding wetting resistance against water in air and oil underwater. As a result of this antiwetting property, the composite CNTF membrane displays a stable water vapor flux and a near complete salt rejection (>99.9%) in the desalination of highly saline water containing low surface tension contaminants. The antimicrobial property of the composite CNTF membrane imparted by the unique forest‐like architecture and the oxidative effect of carbon nanotubes (CNTs) are further demonstrated. The results exemplify an effective strategy for engineering CNT architecture to elucidate the structure–property–performance relationship of the nanocomposite membranes and to guide the design of robust thermal desalination membranes.

     
    more » « less
  3. Abstract

    Membrane-based separation technologies are attractive to remediating unconventional water sources, including brackish, industrial, and municipal wastewater, due to their versatility and relatively high energy efficiency. However, membrane fouling by dissolved or suspended organic substances remains a primary challenge which can result in an irreversible decline of the permeate flux. To overcome this, membranes have been incorporated with photocatalytic materials that can degrade these organic substances deposited on the surface upon light illumination. While such photocatalytic membranes have demonstrated that they can recover their inherent permeability, less information is known about the effect of photocatalysis on the kinetics of the permeate flux. In this work, a photocatalytic mesh that can selectively permeate water while repelling oil was fabricated by coating a mixture of nitrogen-doped TiO2(N-TiO2) and perfluorosilane-grafted SiO2(F-SiO2) nanoparticles on a stainless steel mesh. Utilizing the photocatalytic mesh, the time-dependent evolution of the water-rich permeate flux as a result of photocatalytic degradation of the oil was studied under the visible light illumination. A mathematical model was developed that can relate the photocatalytic degradation of the organic substances deposited on a mesh surface to the evolution of the permeate flux. This model was established by integrating the Langmuir–Hinshelwood kinetics for photocatalysis and the Cassie–Baxter wettability analysis on a chemically heterogeneous mesh surface into a permeate flux relation. Consequently, the time-dependent water-rich permeate flux values are compared with those predicted by using the model. It is found that the model can predict the evolution of the water-rich permeate flux with a goodness of fit of 0.92.

     
    more » « less
  4. In this study, hydrophilic silica nanoparticles (Si NPs) were used to modify α-alumina tubular membranes to improve their performance in terms of flux, oil rejection, and anti-fouling properties. Our work focuses on enhancing membrane performance, particularly for difficult applications such as produced water treatment. The prepared membranes were applied for oil-in-water emulsion treatment. After coating hydrophilic Si NPs, the oil contact angle improved from 133.8° to 171.4°. To prevent Si NPs from leaching off the surface of α-alumina tubular membranes, polyvinyl alcohol was used to coat the membranes as a pre-treatment step before Si NP modification. After coating the membrane with Si NPs, the roughness of the membrane surface decreased, likely leading to less fouling. After coating Si NPs, Total Organic Carbon rejection increased from 93.1% for pristine α-alumina tubular membranes to 97.7% for silica-modified membranes because of hydrophilic improvements of the modified membranes. The Si NP coating improved the anti-fouling property of membranes with the flux recovery ratio increasing from 71.3% for pristine α-alumina tubular membranes to 85.9% for silica-modified membranes. Scanning Electron Microscopy, Energy- dispersive X-ray spectroscopy, oil contact angle, and Atomic Force Microscopy characterization tests were done. The tests showed successful Si NPs impregnation and altered wettability. 
    more » « less
  5. null (Ed.)
    Conventional approaches to mitigate fouling of membrane surfaces impart hydrophilicity to the membrane surface, which increases the water of hydration and fluidity near the surface. By contrast, we demonstrate here that tuning the membrane surface energy close to that of the dispersive component of water surface tension (21.8 mN m −1 ) can also improve the antifouling properties of the membrane. Specifically, ultrafiltration (UF) membranes were first modified using polydopamine (PDA) followed by grafting of amine-terminated polysiloxane (PSi-NH 2 ). For example, with 2 g L −1 PSi-NH 2 coating solution, the obtained coating layer contains 53% by mass fraction PSi-NH 2 and exhibits a total surface energy of 21 mN m −1 , decreasing the adsorption of bovine serum albumin by 44% compared to the unmodified membrane. When challenged with 1 g L −1 sodium alginate in a constant-flux crossflow system, the PSi-NH 2 -grafted membrane exhibits a 70% lower fouling rate than the pristine membrane at a water flux of 110 L (m 2 h) −1 and good stability when cleaned with NaOH solutions. 
    more » « less