skip to main content


Title: Domain Adaptation Methods for Lab-to-Field Human Context Recognition
Human context recognition (HCR) using sensor data is a crucial task in Context-Aware (CA) applications in domains such as healthcare and security. Supervised machine learning HCR models are trained using smartphone HCR datasets that are scripted or gathered in-the-wild. Scripted datasets are most accurate because of their consistent visit patterns. Supervised machine learning HCR models perform well on scripted datasets but poorly on realistic data. In-the-wild datasets are more realistic, but cause HCR models to perform worse due to data imbalance, missing or incorrect labels, and a wide variety of phone placements and device types. Lab-to-field approaches learn a robust data representation from a scripted, high-fidelity dataset, which is then used for enhancing performance on a noisy, in-the-wild dataset with similar labels. This research introduces Triplet-based Domain Adaptation for Context REcognition (Triple-DARE), a lab-to-field neural network method that combines three unique loss functions to enhance intra-class compactness and inter-class separation within the embedding space of multi-labeled datasets: (1) domain alignment loss in order to learn domain-invariant embeddings; (2) classification loss to preserve task-discriminative features; and (3) joint fusion triplet loss. Rigorous evaluations showed that Triple-DARE achieved 6.3% and 4.5% higher F1-score and classification, respectively, than state-of-the-art HCR baselines and outperformed non-adaptive HCR models by 44.6% and 10.7%, respectively.  more » « less
Award ID(s):
2021871
NSF-PAR ID:
10432335
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
23
Issue:
6
ISSN:
1424-8220
Page Range / eLocation ID:
3081
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Active learning is commonly used to train label-efficient models by adaptively selecting the most informative queries. However, most active learning strategies are designed to either learn a representation of the data (e.g., embedding or metric learning) or perform well on a task (e.g., classification) on the data. However, many machine learning tasks involve a combination of both representation learning and a task-specific goal. Motivated by this, we propose a novel unified query framework that can be applied to any problem in which a key component is learning a representation of the data that reflects similarity. Our approach builds on similarity or nearest neighbor (NN) queries which seek to select samples that result in improved embeddings. The queries consist of a reference and a set of objects, with an oracle selecting the object most similar (i.e., nearest) to the reference. In order to reduce the number of solicited queries, they are chosen adaptively according to an information theoretic criterion. We demonstrate the effectiveness of the proposed strategy on two tasks - active metric learning and active classification - using a variety of synthetic and real world datasets. In particular, we demonstrate that actively selected NN queries outperform recently developed active triplet selection methods in a deep metric learning setting. Further, we show that in classification, actively selecting class labels can be reformulated as a process of selecting the most informative NN query, allowing direct application of our method. 
    more » « less
  2. Haliloglu, Turkan (Ed.)
    Cryo-electron tomography (cryo-ET) provides 3D visualization of subcellular components in the near-native state and at sub-molecular resolutions in single cells, demonstrating an increasingly important role in structural biology in situ . However, systematic recognition and recovery of macromolecular structures in cryo-ET data remain challenging as a result of low signal-to-noise ratio (SNR), small sizes of macromolecules, and high complexity of the cellular environment. Subtomogram structural classification is an essential step for such task. Although acquisition of large amounts of subtomograms is no longer an obstacle due to advances in automation of data collection, obtaining the same number of structural labels is both computation and labor intensive. On the other hand, existing deep learning based supervised classification approaches are highly demanding on labeled data and have limited ability to learn about new structures rapidly from data containing very few labels of such new structures. In this work, we propose a novel approach for subtomogram classification based on few-shot learning. With our approach, classification of unseen structures in the training data can be conducted given few labeled samples in test data through instance embedding. Experiments were performed on both simulated and real datasets. Our experimental results show that we can make inference on new structures given only five labeled samples for each class with a competitive accuracy (> 0.86 on the simulated dataset with SNR = 0.1), or even one sample with an accuracy of 0.7644. The results on real datasets are also promising with accuracy > 0.9 on both conditions and even up to 1 on one of the real datasets. Our approach achieves significant improvement compared with the baseline method and has strong capabilities of generalizing to other cellular components. 
    more » « less
  3. Speech emotion recognition (SER) is a challenging task due to the limited availability of real-world labeled datasets. Since it is easier to find unlabeled data, the use of self-supervised learning (SSL) has become an attractive alternative. This study proposes new pre-text tasks for SSL to improve SER. While our target application is SER, the proposed pre-text tasks include audio-visual formulations, leveraging the relationship between acoustic and facial features. Our proposed approach introduces three new unimodal and multimodal pre-text tasks that are carefully designed to learn better representations for predicting emotional cues from speech. Task 1 predicts energy variations (high or low) from a speech sequence. Task 2 uses speech features to predict facial activation (high or low) based on facial landmark movements. Task 3 performs a multi-class emotion recognition task on emotional labels obtained from combinations of action units (AUs) detected across a video sequence. We pre-train a network with 60.92 hours of unlabeled data, fine-tuning the model for the downstream SER task. The results on the CREMA-D dataset show that the model pre-trained on the proposed domain-specific pre-text tasks significantly improves the precision (up to 5.1%), recall (up to 4.5%), and F1-scores (up to 4.9%) of our SER system. 
    more » « less
  4. Activity recognition is central to many motion analysis applications ranging from health assessment to gaming. However, the need for obtaining sufficiently large amounts of labeled data has limited the development of personalized activity recognition models. Semi-supervised learning has traditionally been a promising approach in many application domains to alleviate reliance on large amounts of labeled data by learning the label information from a small set of seed labels. Nonetheless, existing approaches perform poorly in highly dynamic settings, such as wearable systems, because some algorithms rely on predefined hyper-parameters or distribution models that needs to be tuned for each user or context. To address these challenges, we introduce LabelForest 1, a novel non-parametric semi-supervised learning framework for activity recognition. LabelForest has two algorithms at its core: (1) a spanning forest algorithm for sample selection and label inference; and (2) a silhouette-based filtering method to finalize label augmentation for machine learning model training. Our thorough analysis on three human activity datasets demonstrate that LabelForest achieves a labeling accuracy of 90.1% in presence of a skewed label distribution in the seed data. Compared to self-training and other sequential learning algorithms, LabelForest achieves up to 56.9% and 175.3% improvement in the accuracy on balanced and unbalanced seed data, respectively. 
    more » « less
  5. Shekhar, Shashi ; Zhou, Zhi-Hua ; Chiang, Yao-Yi ; Stiglic, Gregor (Ed.)
    Creating separable representations via representation learning and clustering is critical in analyzing large unstructured datasets with only a few labels. Separable representations can lead to supervised models with better classification capabilities and additionally aid in generating new labeled samples. Most unsupervised and semisupervised methods to analyze large datasets do not leverage the existing small amounts of labels to get better representations. In this paper, we propose a spatiotemporal clustering paradigm that uses spatial and temporal features combined with a constrained loss to produce separable representations. We show the working of this method on the newly published dataset ReaLSAT, a dataset of surface water dynamics for over 680,000 lakes across the world, making it an essential dataset in terms of ecology and sustainability. Using this large unlabelled dataset, we first show how a spatiotemporal representation is better compared to just spatial or temporal representation. We then show how we can learn even better representations using a constrained loss with few labels. We conclude by showing how our method, using few labels, can pick out new labeled samples from the unlabeled data, which can be used to augment supervised methods leading to better classification. 
    more » « less