skip to main content


Title: Qupcakery: A Puzzle Game that Introduces Quantum Gates to Young Learners
Quantum computing (QC) is an emerging field at the intersection of computer science and physics. Harnessing the power of quantum mechanics, QC is expected to solve otherwise intractable problems significantly faster, including in encryption, drug development, and optimization. High-quality and accessible QC resources are needed to help students develop the critical skills and confidence to contribute to the field. However, existing programs are often aimed at college students with an advanced mathematics or physics background, shutting out potential innovators. To make quantum learning resources for a broad, young audience, we designed Qupcakery, a puzzle game that introduces players to several core QC concepts: quantum gates, superposition, and measurement. We present preliminary testing results with both middle school and high school students. Using in-game data, observation notes, and focus group interviews, we identify student challenges and report student feedback. Overall, the game is at an appropriate level for high school students but middle school students need more levels to practice when new concepts are introduced.  more » « less
Award ID(s):
2115780
NSF-PAR ID:
10432370
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE 2023)
Volume:
1
Page Range / eLocation ID:
1143 to 1149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the growing prevalence of AI, the need for K-12 AI education is becoming more crucial, which is prompting active research in developing engaging and age-appropriate AI learning activities. Efforts are underway, such as those by the AI4K12 initiative, to establish guidelines for organizing K- 12 AI education; however, effective instructional resources are needed by educators. In this paper, we describe our work to design, develop, and implement an unplugged activity centered on facial recognition technology for middle school students. Facial recognition is integrated into a wide range of applications throughout daily life, which makes it a familiar and engaging tool for students and an effective medium for conveying AI concepts. Our unplugged activity, “Guess Whose Face,” is designed as a board game that focuses on Representation and Reasoning from AI4K12’s 5 Big Ideas in AI. The game is crafted to enable students to develop AI competencies naturally through physical interaction. In the game, one student uses tracing paper to extract facial features from a familiar face shown on a card, such as a cartoon character or celebrity, and then other students try to guess the identity of the hidden face. We discuss details of the game, its iterative refinement, and initial findings from piloting the activity during a summer camp for rural middle school students.

     
    more » « less
  2. Quantum computing presents a paradigmatic shift in the field of computation, in which unintuitive properties of quantum mechanics can be harnessed to change the way we approach a wide range of problems. However, due to the mathematics and physics perspective through which quantum computing is traditionally presented, most resources are inaccessible to many undergraduate students, let alone the general public. It is thus imperative to develop resources and best-practices for quantum computing instruction accessible to students at all levels. In this paper, we describe the development and results of our Massive Open Online Course (MOOC) "Introduction to Quantum Computing for Everyone." This course presents an introduction to quantum computing with few technical prerequisites. In the first half of the course, quantum computing concepts are introduced with a unique, purely visual representation, allowing students to develop conceptual understanding without the burden of learning new mathematical notation. In the second half, students are taught the formal notation for concepts and objects already introduced, reinforcing student understanding of these concepts and providing an applicable context for the technical material. Most notably, we find that introducing the math content in the curriculum's second stage led to no drops in engagement or student performance, suggesting that our curriculum's spiral structure eased the technical burden. 
    more » « less
  3. Robotics is an innovative way of intertwining the fields of science, technology, engineering, and mathematics (STEM). Through robotics, students become competent and confident in abstract thinking, problem solving, teamwork, goal-setting, and leadership. Established in 1998, BEST Robotics Inc., a non-profit volunteer-based organization and network with approximately 45 hubs across the United States provides students, regardless of socioeconomic status from public, private and home school groups and organizations the opportunity to explore the engineering design process via the design, development and testing of robots that can perform specific tasks on game fields. As a regional hub in BEST, Mississippi BEST (MSBEST) Robotics used surveys to evaluate the impact and outcomes of BEST Robotics on student performance and perceptions towards earning STEM degrees post involvement in a regional BEST Robotics Competition. MSBEST served approximately 250 middle and high school students dispersed into 24 teams. As a result of participation in MSBEST, students enhanced their self-efficacies, became more familiar and comfortable with STEM concepts through the engineering design process, worked in teams to compete in exhilarating competitions which served as great performance assessments, gained transferrable skills in programming, marketing, technical writing, design-to-implementation and failure analysis, and developed increased interest to pursue degrees in STEM. 
    more » « less
  4. null (Ed.)
    The Contour to Classification game is a browser-based game that teaches middle school students basic concepts in supervised learning. The game is an online variant of the Neural Network game that was presented at AAAI Fall Symposium Teaching AI in K-12 track in 2019. We share preliminary findings from implementing the online version of the original Neural Network game in a pilot research study and describe the game’s evolution to the Contour to Classification game. The new game uses a simulation of a neural network to engage students, through digital drawing and selection interactions, in the classification of images. The players act as nodes in a multi-step process of compositing salient smaller features to form larger features and ultimately a partial contour of an object that is used to make a prediction. After evaluating the prediction, information is sent back through the network in processes mimicking back propagation and gradient descent. Additional rounds of the game can be played to witness how the network evolves and gets “better” at classifying images from contours. Through this game, we aimed for students to learn the structure, components, and functioning of a neural network, and the processes involved in supervised learning. The Contour to Classification game supports online student learning by providing the image classification experience using purely visual inputs to each layer. We will conclude with a discussion of if and how the evolving design addresses classroom needs and scaling considerations. 
    more » « less
  5. This experience report describes an approach for helping elementary schools integrate computational thinking and coding by leveraging existing resources and infrastructure that do not rely on 1-1 computing. A particular focus is using the school library and media center as a site to complement and enhance classroom instruction on coding. Further, our approach builds upon "unplugged" knowledge and practices that are already familiar to and motivating for students, in this case tabletop board games. Through these games, students can use their prior knowledge and ease with tabletop gaming mechanics to cue relevant ideas for core computational concepts. We describe a model and an instructional unit spanning across classroom and school library settings that builds upon board game play as a source domain for computing knowledge. Building on expansive framing, the model emphasizes instructional linkages being made between one domain (the tabletop board game) and another (specially designed Scratch project shells with partially complete code blocks) such that the reasoning activities and different contexts are seen as instantiations of the same encompassing context. We present the experiences of three elementary school teachers as they implemented the unit in their classrooms and with their school librarian. We also show initial findings on the impact of the unit on student interest (N=87), as measured by pre- and post- surveys. We conclude with lessons learned about ways to improve the unit and future classroom implementations. 
    more » « less