skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectroscopic study of the 4 f 7 6 s 2 8 S 7/2∘−4 f 7 ( 8 S ∘ )6 s 6 p ( 1 P ∘ ) 8 P 9/2 transition in neutral europium-151 and europium-153: absolute frequency and hyperfine structure
We report on spectroscopic measurements on the 4 f 7 6 s 2 8 S 7 / 2 ∘ → 4 f 7 ( 8 S ∘ ) 6 s 6 p ( 1 P ∘ ) 8 P 9 / 2 transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the 6 s 6 p ( 1 P ∘ ) 8 P 9 / 2 state were found to be A ( 151 ) = − 228.84 ( 2 ) M H z , B ( 151 ) = 226.9 ( 5 ) M H z and A ( 153 ) = − 101.87 ( 6 ) M H z , B ( 153 ) = 575.4 ( 1.5 ) M H z , which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results.  more » « less
Award ID(s):
2110311 1555232
PAR ID:
10432423
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of the Optical Society of America B
Volume:
39
Issue:
10
ISSN:
0740-3224
Page Range / eLocation ID:
2596
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on spectroscopic measurements on the 4f76s28S7/2−4f7(8S)6s6p(1P)8P5/2,7/2transitions at 466.32 nm and 462.85 nm, respectively, in neutral europium-151 and europium-153. The center of gravity frequencies for the 151 and 153 isotopes for both transitions are reported for the first time using saturated absorption spectroscopy. For the 6s6p(1P)8P5/2state, the center of gravity frequencies were found to be 642,894,493.3(4) MHz and 642,891,693.3(9) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA(151)=−157.01(3)MHz,B(151)=74.5(4)MHz andA(153)=−69.43(14)MHz,B(153)=191.0(26)MHz. These hyperfine values are all consistent with previously published results except forB(151) that has a small discrepancy. The isotope shift was found to be 2799.54(20) MHz, a small discrepancy with previously published results. For the 6s6p(1P)8P7/2state, the center of gravity frequencies were found to be 647,708,930.6(6) MHz and 647,705,958.4(26) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA(151)=−218.66(4)MHz,B(151)=−293.4(8)MHz andA(153)=−97.15(13)MHz,B(153)=−750(3)MHz. These values are all consistent with previously published results except forA(151) that has a small discrepancy. The isotope shift was found to be 2972.8(5) MHz, a small discrepancy with previously measured results. 
    more » « less
  2. null (Ed.)
    The title complexes, (η 4 -cycloocta-1,5-diene)bis(1,3-dimethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C 5 H 8 N 2 ) 2 (C 8 H 12 )]I, ( 1 ) and (η 4 -cycloocta-1,5-diene)bis(1,3-diethylimidazol-2-ylidene)iridium(I) iodide, [Ir(C 7 H 12 N 2 ) 2 (C 8 H 12 )]I, ( 2 ), were prepared using a modified literature method. After carrying out the oxidative addition of the amino acid L-proline to [Ir(COD)(IMe) 2 ]I in water and slowly cooling the reaction to room temperature, a suitable crystal of 1 was obtained and analyzed by single-crystal X-ray diffraction at 100 K. Although this crystal structure has previously been reported in the Pbam space group, it was highly disordered and precise atomic coordinates were not calculated. A single crystal of 2 was also obtained by heating the complex in water and letting it slowly cool to room temperature. Complex 1 was found to crystallize in the monoclinic space group C 2/ m , while 2 crystallizes in the orthorhombic space group Pccn , both with Z = 4. 
    more » « less
  3. Crystals of the title salt, (C8H20N)[Sn(C6H5)3(C2H2O2S)], comprise diisobutylammonium cations and mercaptoacetatotriphenylstannate(IV) anions. The bidentate binding mode of the mercaptoacetate ligand gives rise to a five-coordinated, ionic triphenyltin complex with a distortedcis-trigonal–bipyramidal geometry around the tin atom. In the crystal, charge-assisted ammonium-N—H...O(carboxylate) hydrogen-bonding connects two cations and two anions into a four-ion aggregate. Two positions were resolved for one of the phenyl rings with the major component having a site occupancy factor of 0.60 (3). 
    more » « less
  4. ABSTRACT We present predictions for the high-redshift halo–galaxy–supermassive black hole (SMBH) connection from the Trinity model. Matching a comprehensive compilation of galaxy (0 ≤ z ≤ 13) and SMBH data sets (0 ≤ z ≤ 6.5), Trinity finds: (1) The number of SMBHs with M• > 109 M⊙ in the observable Universe increases by five orders of magnitude from z ∼ 10 to z ∼ 2, and by another factor of ∼3 from z ∼ 2 to z = 0; (2) The M• > 109 and 1010 M⊙ SMBHs at z ∼ 6 live in haloes with ∼(2 − 3) and (3 − 5) × 1012 M⊙; (3) the newly discovered JWST AGN candidates at 7 ≲ z ≲ 11 are overmassive compared to the intrinsic SMBH mass–galaxy mass relation from Trinity, but they are still broadly consistent with Trinity predictions for flux limited AGN samples with Lauer bias. This bias favours the detection for overmassive SMBHs due to higher luminosities at a fixed Eddington ratio. However UHZ1’s M•/M* ratio is still some 1 dex higher than Trinity AGNs, indicating a discrepancy; (4) Trinity underpredicts the number densities of GN-z11 and CEERS_1019 analogues. But given the strong constraints from existing data in Trinity, the extra constraint from GN-z11 and CEERS_1019 does not significantly change trinity model results. (5) z = 6–10 quasar luminosity functions will reduce uncertainties in the trinity prediction of the z = 6–10 SMBH mass–galaxy mass relation by up to ∼0.5 dex. These luminosity functions will be available with future telescopes, such as Roman and Euclid. 
    more » « less
  5. null (Ed.)
    Controlled energy transfer has been found to be one of the most effective ways of designing tunable and white photoluminescent phosphors. Utilizing host emission to achieve the same would lead to a new dimension in the design strategy for novel luminescent materials in solid state lighting and display devices. In this work, we have achieved controlled energy transfer by suppressing the host to dopant energy transfer in La 2 Hf 2 O 7 :Eu 3+ nanoparticles (NPs) by co-doping with uranium ions. Uranium acts as a barrier between the oxygen vacancies of the La 2 Hf 2 O 7 host and Eu 3+ doping ions to increase their separation and reduce the non-radiative energy transfer between them. Density functional theory (DFT) calculations of defect formation energy showed that the Eu 3+ dopant occupies the La 3+ site and the uranium ion occupies the Hf 4+ site. Co-doping the La 2 Hf 2 O 7 :Eu 3+ NPs with uranium ions creates negatively charged lanthanum and hafnium vacancies making the system highly electron rich. Formation of cation vacancies is expected to compensate the excess charge in the U and Eu co-doped La 2 Hf 2 O 7 NPs suppressing the formation of oxygen vacancies. This work shows how one can utilize the full color gamut in the La 2 Hf 2 O 7 :Eu 3+ ,U 6+ NPs with blue, green and red emissions from the host, uranium and europium, respectively, to produce near perfect white light emission. 
    more » « less