skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectroscopic study of the 4f 7 6s 2 8 S 7/2∘ – 4f 7 ( 8 S ° ) 6s6p( 1 P ° ) 8 P 5/2,7/2 transitions in neutral europium-151 and europium-153: absolute frequency and hyperfine structure
We report on spectroscopic measurements on the 4f76s28S7/2−4f7(8S)6s6p(1P)8P5/2,7/2transitions at 466.32 nm and 462.85 nm, respectively, in neutral europium-151 and europium-153. The center of gravity frequencies for the 151 and 153 isotopes for both transitions are reported for the first time using saturated absorption spectroscopy. For the 6s6p(1P)8P5/2state, the center of gravity frequencies were found to be 642,894,493.3(4) MHz and 642,891,693.3(9) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA(151)=−157.01(3)MHz,B(151)=74.5(4)MHz andA(153)=−69.43(14)MHz,B(153)=191.0(26)MHz. These hyperfine values are all consistent with previously published results except forB(151) that has a small discrepancy. The isotope shift was found to be 2799.54(20) MHz, a small discrepancy with previously published results. For the 6s6p(1P)8P7/2state, the center of gravity frequencies were found to be 647,708,930.6(6) MHz and 647,705,958.4(26) MHz for the 151 and 153 isotopes, respectively. The hyperfine constants for the upper state were found to beA(151)=−218.66(4)MHz,B(151)=−293.4(8)MHz andA(153)=−97.15(13)MHz,B(153)=−750(3)MHz. These values are all consistent with previously published results except forA(151) that has a small discrepancy. The isotope shift was found to be 2972.8(5) MHz, a small discrepancy with previously measured results.  more » « less
Award ID(s):
2110311
PAR ID:
10525070
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of the Optical Society of America B
Volume:
41
Issue:
5
ISSN:
0740-3224
Page Range / eLocation ID:
1217
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on spectroscopic measurements on the 4 f 7 6 s 2 8 S 7 / 2 ∘ → 4 f 7 ( 8 S ∘ ) 6 s 6 p ( 1 P ∘ ) 8 P 9 / 2 transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the 6 s 6 p ( 1 P ∘ ) 8 P 9 / 2 state were found to be A ( 151 ) = − 228.84 ( 2 ) M H z , B ( 151 ) = 226.9 ( 5 ) M H z and A ( 153 ) = − 101.87 ( 6 ) M H z , B ( 153 ) = 575.4 ( 1.5 ) M H z , which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results. 
    more » « less
  2. Abstract The millimeter-wave spectrum of the SiP radical (X2Πi) has been measured in the laboratory for the first time using direct-absorption methods. SiP was created by the reaction of phosphorus vapor and SiH4in argon in an AC discharge. Fifteen rotational transitions (J+ 1 ←J) were measured for SiP in the Ω = 3/2 ladder in the frequency range 151–533 GHz, and rotational, lambda doubling, and phosphorus hyperfine constants determined. Based on the laboratory measurements, SiP was detected in the circumstellar shell of IRC+10216, using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory at 1 mm and 2 mm, respectively. Eight transitions of SiP were searched: four were completely obscured by stronger features, two were uncontaminated (J= 13.5 → 12.5 and 16.5 → 15.5), and two were partially blended with other lines (J= 8.5 → 7.5 and 17.5 → 16.5). The SiP line profiles were broader than expected for IRC+10216, consistent with the hyperfine splitting. From non-LTE radiative transfer modeling, SiP was found to have a shell distribution with a radius ∼300R*, and an abundance, relative to H2, off∼ 2 × 10−9. From additional modeling, abundances of 7 × 10−9and 9 × 10−10were determined for CP and PN, respectively, both located in shells at 550–650R*. SiP may be formed from grain destruction, which liberates both phosphorus and silicon into the gas phase, and then is channeled into other P-bearing molecules such as PN and CP. 
    more » « less
  3. Abstract Cadmium is laser-cooled and trapped with excitations to triplet states with UVA light, first using only the 67 kHz wide 326 nm intercombination line and subsequently, for large loading rates, the 25 MHz wide 361 nm3P23D3transition. Eschewing the hard UV 229 nm1S01P1transition, only small magnetic fields gradients, less than 6 G cm−1, are required enabling a 100% transfer of atoms from the 361 nm trap to the 326 nm narrow-line trap. All 8 stable cadmium isotopes are straightforwardly trapped, including two nuclear-spin- 1 2 fermions that require no additional repumping. We observe evidence of3P2collisions limiting the number of trapped metastable atoms, report isotope shifts for111Cd and113Cd of the 326 nm1S03P1, 480nm3P13S1, and 361 nm3P23D3transitions, and measure the114Cd 5s5p3P2→ 5s5d3D3transition frequency to be 830 096 573(15) MHz. 
    more » « less
  4. Palladium‐catalyzed aryl amination and Heck arylation reactions are complementary transformations, generally requiring a suitable catalyst combination and a base. With substrates containing both an amino group and a vinyl moiety, control of C─N versus C─C reactivity can lead to regiodivergent functionalizations. With this focus, reactions of silyl‐protected 8‐vinyl 2'‐deoxyadenosine and adenosine with aryl bromides and iodides have been studied. Pd(OAc)2, Pd2(dba)3, and preformed dichloro[1,1′‐bis(di‐t‐butylphosphino)ferrocene]palladium (II) (Pd‐118) were evaluated as metal sources. Ligands tested were Xantphos, DPEphos, BIPHEP, and DPPF, with Cs2CO3and K3PO4as bases. In toluene as solvent, the Pd(OAc)2/Xantphos/Cs2CO3combination was uniquely capable of predominantN6arylation. Aryl bromides and iodides gave comparable product yields. Replacement of Cs2CO3with K3PO4redirected arylation from the nitrogen atom to the vinyl carbon atom, and all other catalyst, ligand, and base combinations gave Cvinylarylation as well. Simply switching from Pd(OAc)2to Pd2(dba)3resulted in loss of theN6‐selectivity and Cvinylarylation was favored. Based upon these results, using two structurally similar catalytic systems sequential CvinylandN6arylations of the nucleosides were accomplished. Some of the products were converted to other novel nucleoside analogues. Because some compounds were fluorescent, their photophysical properties were assessed experimentally and computationally. 
    more » « less
  5. Abstract The physics potential of detecting8B solar neutrinos will be exploited at the Jiangmen Underground Neutrino Observatory (JUNO), in a model-independent manner by using three distinct channels of the charged current (CC), neutral current (NC), and elastic scattering (ES) interactions. Due to the largest-ever mass of13C nuclei in the liquid scintillator detectors and the expected low background level,8B solar neutrinos are observable in the CC and NC interactions on13C for the first time. By virtue of optimized event selections and muon veto strategies, backgrounds from the accidental coincidence, muon-induced isotopes, and external backgrounds can be greatly suppressed. Excellent signal-to-background ratios can be achieved in the CC, NC, and ES channels to guarantee the observation of the8B solar neutrinos. From the sensitivity studies performed in this work, we show that JUNO, with 10 yr of data, can reach the 1σprecision levels of 5%, 8%, and 20% for the8B neutrino flux, sin 2 θ 12 , and Δ m 21 2 , respectively. Probing the details of both solar physics and neutrino physics would be unique and helpful. In addition, when combined with the Sudbury Neutrino Observatory measurement, the world's best precision of 3% is expected for the measurement of the8B neutrino flux. 
    more » « less