The use of ductile concrete materials such as High Performance Fiber Reinforced Cementitious Composites (HPFRCCs) within plastic hinge regions of structural components has garnered research interest in order to improve the seismic resistance of reinforced concrete structures. While experimental and numerical results appear promising in reducing component damage and probability of system level collapse, accurate nonlinear analysis tools capable of capturing the influence of axial load well into a component’s inelastic regime is needed. In this study, a series of 180 high fidelity numerical simulations of HPFRCC beam–column elements are simulated and used to calibrate new plastic hinge length expressions for concentrated and distributed plasticity models for use in system level structural analysis. The numerical models cover a range of HPFRCC material properties, reinforcement ratios, shear span lengths, and axial load levels. The ability of the newly developed expressions to predict component inelastic rotations are subsequently compared to hinge length expressions in the literature and the inelastic rotations of 47 experimental components. The results of this study provide new insights into the effects of axial load on the plastic hinge behavior of HPFRCC components, significantly improves on the accuracy of past plastic hinge length expressions allowing for more accurate modeling of HPFRCC component responses and system level behavior.
more »
« less
Effects of Axial Load and Tensile Strength on Reinforced UHPC Plastic Hinge Length
Researchers have explored the high energy absorption capacity and strength of UHPC materials to improve the seismic performance of structural components. Experimental results in the literature of reinforced UHPC members have indicated superior damage tolerance, higher strength and deformation capacities, and lower potential for collapse across a range of structural components. Investigations into the underlying failure mechanisms have highlighted the significance of the synergy between material tensile strength and reinforcement properties on member flexure response. Although research into the seismic application of reinforced UHPC continues to expand, relatively little is known about the effects of varying axial load on the plastic hinge response of beam-column elements across a range of UHPC tensile properties and reinforcement levels. Therefore, in this study, the effects of varying tensile properties on beam-column elements through numerical simulations across a range of axial load ratios were investigated. Two dimensional numerical models accounting for material nonlinearities (e.g., bond-slip, UHPC tensile strength and strain capacity) were used to capture component responses. Trends in the moment-drift responses and plastic hinge lengths have highlighted the diminishing returns of using higher fiber volume percentages (2%) as higher axial loads tend to relieve tensile demands. Additionally, existing plastic hinge length expressions for RC components were found to over-predict hinge length consistently while those developed for HPFRCC components accurately predict plastic hinge lengths at low axial load levels.
more »
« less
- Award ID(s):
- 2141955
- PAR ID:
- 10432444
- Editor(s):
- Aaleti, Sriram; Okumus, Pinar
- Date Published:
- Journal Name:
- International Interactive Symposium on UHPC
- Volume:
- 3
- Issue:
- 1
- Page Range / eLocation ID:
- 31
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aaleti, Sriram; Okumus, Pinar (Ed.)The unique mechanical properties of ultra-high performance concrete (UHPC) causes changes in failure modes and ductility in reinforced components. Numerous experiments have shown these materials, and others with similar ductile characteristics in tension, can improve the damage tolerance, strength, and ductility of members subjected to large deformations from seismic loading and similar extreme conditions. The use of these materials, however, has not been systematically studied to understand their application at a system-level performance and design procedures have been complicated due to their unconventional failure mechanism. This project aims to fill this gap by testing a targeted set of components subjected to combined effects of axial loads and bending with variations in axial load ratio and longitudinal reinforcement ratio. Additional experiments are planned to compare performance across other ductile concrete materials with variations in mechanical properties. The experimental results including load-deformation, reinforcement strain, concrete surface strain will be used to understand the parameters that have the highest influence on plastic hinge length and moment-rotation response which can ultimately help to validate analytical models against experiments based on these key parameters.more » « less
-
Massicotte, Bruno; Mobasher, Barzin; Plizzari, Giovanni (Ed.)While widely adopted prescriptive-based design practices work to limit the probability of complete collapse, relatively little attention and emphasis is placed on the damage levels and functionality of structures after seismic events. High-performance fiber reinforced cementitious composites reinforced with steel (R/HPFRCCs) have been of growing interest for such seismic applications to improve structural level damage and performance. In order to progress the implementation of these materials at the structural level, a systematic approach toward understanding the mechanics of R/HPFRCC columns is warranted. Therefore, in this study, an existing numerical framework for R/HPFRCC beams was extended to the analysis of columns across a range of materials, reinforcement ratios, and axial load levels to evaluate the change in component level response. It was observed that axial load can considerably increase the nominal bending moment capacity of R/HPFRCC columns as well as affect the drift capacity. A shift from failure on the tension side of the element (e.g., reinforcement fracture) to the compression side (e.g., crushing of the HPFRCC) of the numerically tested column occurred between an axial load ratio of 10 and 20%. Lastly, changes in bond stress due to the material level tensile strength were shown to considerably impact the ultimate component drift capacity.more » « less
-
Modern seismic resistant design has been focusing on development of cost effective structural systems which experience minimal damage during an earthquake. Unbonded post-tensioned precast concrete walls provide a suitable solution due to their self-centering behavior and their ability to undergo large nonlinear deformation with minimal damage. Several experimental and analytical investigation focusing on lateral load resisting behavior of unbonded post-tensioned precast walls has been carried out in the past two decades. These investigations have primarily focused on lateral load resistance, self-centering capacity, energy dissipation and extent of damage in confined concrete region of the wall system. Past experimental results have shown that self-centering capacity of the wall system decreases at higher lateral drifts. Particularly, rocking walls with higher energy dissipation capacity, sustain considerable residual displacement. This residual displacement in the wall system may affect the ability of the entire structure to re-center. Though increasing initial prestressing force helps in reducing residual drift, it also subjects concrete to increased axial compressive stress which may lead to premature strength degradation of confined concrete in rocking corners. Accurate prediction of expected concrete strains in confined regions during increasing drift cycle is critical in design of such wall systems. Simplified design procedures available in literature assume different values for plastic hinge length to estimate critical concrete strain values. The results from the experimental tests available in literature were analyzed, to understand the effects of energy dissipating elements on residual drift and to examine the accuracy of simplified design procedures in predicting critical concrete strain. Based on the findings, recommendations are made on design of energy dissipating elements and plastic hinge length for unbonded post-tensioned precast rocking walls.more » « less
-
This study develops and experimentally validates an innovative technique for enhancing the seismic performance of steel beam to column moment connections. The technique involves reducing the strength of specified regions of the beam flanges by exposing them to high temperatures followed by slow cooling. Analogous to the reduced beam section (RBS) connection, yielding and plastic hinge formation is promoted in the heat-treated beam section (HBS). Moreover, because the elastic and inelastic modulus of the steel is unmodified by the heat-treatment and the beam cross section is not altered, an HBS connection does not sacrifice elastic stiffness or buckling resistance as does the RBS. Design of the HBS connection was performed through detailed finite element analysis and material testing. Two large scale connections modified with the HBS technique were tested in this study. The test program showed that the proposed heat-treatment technique was successful in the promotion of yielding and plastic hinge development in the heat-treated regions with specimens attaining interstory drifts as high as 6% without weld or near weld fracture. Strength degradation due to beam buckling within the HBS was the observed failure mechanism in both specimens. Detail analyses of strain and beam deformation data are presented to explain the HBS connection plastic hinge formation and gradual strength degradation. Broader applications of the technique to other structural components are identified.more » « less
An official website of the United States government

