Abstract The rate of growth or retreat of the Greenland and Antarctic ice sheets remains a highly uncertain component of future sea level change. Here we examine the simulation of Greenland ice sheet surface mass balance (GrIS SMB) in a development branch of the ModelE2 version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM). GCMs are often limited in their ability to represent SMB compared with polar region regional climate models. We compare ModelE2‐simulated GrIS SMB for present‐day (1996–2005) simulations with fixed ocean conditions, at a spatial resolution of 2° latitude by 2.5° longitude (~200 km), with SMB simulated by the Modèle Atmosphérique Régionale (MAR) regional climate model (1996–2005 at a 25‐km resolution). ModelE2 SMB agrees well with MAR SMB on the whole, but there are distinct spatial patterns of differences and large differences in some SMB components. The impacts of changes to the ModelE2 surface are tested, including a subgrid‐scale representation of SMB with surface elevation classes. This has a minimal effect on ice sheet‐wide SMB but corrects local biases. Replacing fixed surface albedo with satellite‐derived values and an age‐dependent scheme has a larger impact, increasing simulated melt by 60%–100%. We also find that lower surface albedo can enhance the effects of elevation classes. Reducing ModelE2 surface roughness length to values closer to MAR reduces sublimation by ~50%. Further work is required to account for meltwater refreezing in ModelE2 and to understand how differences in atmospheric processes and model resolution influence simulated SMB. 
                        more » 
                        « less   
                    
                            
                            Multi-decadal elevation changes of the land terminating sector of West Greenland
                        
                    
    
            Abstract Regional assessments of ice elevation change provide insight into the processes controlling an ice sheet's geometric response to climate forcing. In Southwest Greenland's land terminating sector (SWLTS), it is presumed that ice surface elevation changes result solely from changing surface mass balance (SMB). Here we test this assumption by developing a multi-decadal (1985–2017) record of elevation change from digital elevation models (DEMs) and comparing it to regional climate model output and available records of ice speed. The SWLTS thinned by >12 m on average over the full 32-year period, but the change was highly variable in time and space. Thinning was amplified in the central region of the SWLTS, relative to the north and south. During 1985–2007, the north and south regions demonstrated net thickening while the central region thinned. Regional differences in elevation change are inconsistent with SMB anomalies, indicating that enhanced ice flow in the north and south contributed to thickening during this early time interval. While clear validation in the south is prevented by incomplete velocity data, historical surface speeds in the north were elevated. These findings support the interpretation that changing ice flow can influence ice surface elevation in the slow-moving SWLTS. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10432491
- Date Published:
- Journal Name:
- Journal of Glaciology
- Volume:
- 69
- Issue:
- 273
- ISSN:
- 0022-1430
- Page Range / eLocation ID:
- 120 to 128
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract. Here we present Antarctic snow accumulation variability at the regional scale over the past 1000 years. A total of 79 ice core snow accumulation records were gathered and assigned to seven geographical regions, separating the high-accumulation coastal zones below 2000 m of elevation from the dry central Antarctic Plateau. The regional composites of annual snow accumulation were evaluated against modelled surface mass balance (SMB) from RACMO2.3p2 and precipitation from ERA-Interim reanalysis. With the exception of the Weddell Sea coast, the low-elevation composites capture the regional precipitation and SMB variability as defined by the models. The central Antarctic sites lack coherency and either do not represent regional precipitation or indicate the model inability to capture relevant precipitation processes in the cold, dry central plateau. Our results show that SMB for the total Antarctic Ice Sheet (including ice shelves) has increased at a rate of 7 ± 0.13 Gt decade−1 since 1800 AD, representing a net reduction in sea level of ∼ 0.02 mm decade−1 since 1800 and ∼ 0.04 mm decade−1 since 1900 AD. The largest contribution is from the Antarctic Peninsula (∼ 75 %) where the annual average SMB during the most recent decade (2001–2010) is 123 ± 44 Gt yr−1 higher than the annual average during the first decade of the 19th century. Only four ice core records cover the full 1000 years, and they suggest a decrease in snow accumulation during this period. However, our study emphasizes the importance of low-elevation coastal zones, which have been under-represented in previous investigations of temporal snow accumulation.more » « less
- 
            Investigation of North Pacific climate variability during warm intervals outside of the Common Era is essential for addressing questions regarding ocean-atmosphere teleconnections between low latitudes and the Arctic under future warming scenarios. However, most of existing ice cores extracted from Alaska/Yukon region archive climate information from the last few centuries. This dataset contains radiocarbon (14C) data from a 208 meter surface-to-bedrock ice core recovered from the summit plateau of Mt. Hunter in central Alaska in 2013. By applying radiocarbon dating on carbonaceous aerosols, a continuous depth-age relationship has been established in the Mt. Hunter ice core. Calibrated 14C ages from the two lowest samples (7,946-10,226 cal BP and 7,018-7,975 cal BP) indicate that basal ice on Mt. Hunter has an early Holocene (> 8 kyr) origin. We also show that samples from depth of 161.0-166.1 m weq have nearly uniform 14C ages (3,200 to 3,500 cal BP). One possible explanation is an increase in snow accumulation at Mt. Hunter during regional neoglaciation. When paired with the Mt. Logan PRCol record, the only other Holocene-length ice core from North Pacific region, the Mt. Hunter ice core provides the possibility to investigate spatial changes in high-elevation Holocene hydroclimate.more » « less
- 
            Abstract AimIdentifying how climate change, habitat loss, and corridors interact to influence species survival or extinction is critical to understanding macro‐scale biodiversity dynamics under changing environments. In North America, the ice‐free corridor was the only major pathway for northward migration by megafaunal species during the last deglaciation. However, the timing and interplay among the late Quaternary megafaunal extinctions, climate change, habitat structure, and the opening and reforestation of the ice‐free corridor have been unclear. LocationNorth America. Time period15–10 ka. Major taxa studiedWoolly mammoth (Mammuthus primigenius). MethodsFor central North America and the ice‐free corridor between 15 and 10 ka, we used a series of models and continental‐scale datasets to reconstruct habitat characteristics and assess habitat suitability. The models and datasets include biophysical and statistical niche models Niche Mapper and Maxent, downscaled climate simulations from CCSM3 SynTraCE, LPJ‐GUESS simulations of net primary productivity (NPP) and woody cover, and woody cover based upon fossil pollen from Neotoma. ResultsThe ice‐free corridor may have been of limited suitability for traversal by mammoths and other grazers due to persistently low productivity by herbaceous plants and quick reforestation after opening 14 ka. Simultaneously, rapid reforestation and decreased forage productivity may have led to declining habitat suitability in central North America. This was possibly amplified by a positive feedback loop driven by reduced herbivory pressures, as mammoth population decline led to the further loss of open habitat. Main conclusionsDeclining habitat availability south of the Laurentide Ice Sheet and limited habitat availability in the ice‐free corridor were contributing factors in North American extinctions of woolly mammoths and other large grazers that likely operated synergistically with anthropogenic pressures. The role of habitat loss and attenuated corridor suitability for the woolly mammoth extinction reinforce the critical importance of protected habitat connectivity during changing climates, particularly for large vertebrates.more » « less
- 
            Abstract Surface crevassing on the Greenland Ice Sheet is a large source of uncertainty in processes controlling mass loss due to a lack of comprehensive observations of their location and evolution through time. Here we use high-resolution digital elevation models to map the three-dimensional volume of crevasse fields across the Greenland Ice Sheet in 2016 and 2021. We show that, between the two years, large and significant increases in crevasse volume occurred at marine-terminating sectors with accelerating flow (up to +25.3 ± 10.1% in the southeast sector), while the change in total ice-sheet-wide crevasse volume was within measurement error (+4.3 ± 5.9%). The sectoral increases were offset by a reduction in crevasse volume in the central west sector (−14.2 ± 3.2%), particularly at Sermeq Kujalleq (Jakobshavn Isbræ), which exhibited slowdown and thickening over the study period. Changes in crevasse volume correlate strongly with antecedent discharge changes, indicating that the acceleration of ice flow in Greenland forces significant increases in crevassing on a timescale of less than five years. This response provides a mechanism for mass-loss-promoting feedbacks on sub-decadal timescales, including increased calving, faster flow and accelerated water transfer to the bed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    