skip to main content


Title: Regional Antarctic snow accumulation over the past 1000 years
Abstract. Here we present Antarctic snow accumulation variability at the regional scale over the past 1000 years. A total of 79 ice core snow accumulation records were gathered and assigned to seven geographical regions, separating the high-accumulation coastal zones below 2000 m of elevation from the dry central Antarctic Plateau. The regional composites of annual snow accumulation were evaluated against modelled surface mass balance (SMB) from RACMO2.3p2 and precipitation from ERA-Interim reanalysis. With the exception of the Weddell Sea coast, the low-elevation composites capture the regional precipitation and SMB variability as defined by the models. The central Antarctic sites lack coherency and either do not represent regional precipitation or indicate the model inability to capture relevant precipitation processes in the cold, dry central plateau. Our results show that SMB for the total Antarctic Ice Sheet (including ice shelves) has increased at a rate of 7 ± 0.13 Gt decade−1 since 1800 AD, representing a net reduction in sea level of ∼ 0.02 mm decade−1 since 1800 and ∼ 0.04 mm decade−1 since 1900 AD. The largest contribution is from the Antarctic Peninsula (∼ 75 %) where the annual average SMB during the most recent decade (2001–2010) is 123 ± 44 Gt yr−1 higher than the annual average during the first decade of the 19th century. Only four ice core records cover the full 1000 years, and they suggest a decrease in snow accumulation during this period. However, our study emphasizes the importance of low-elevation coastal zones, which have been under-represented in previous investigations of temporal snow accumulation.  more » « less
Award ID(s):
1643355
NSF-PAR ID:
10231271
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Climate of the Past
Volume:
13
Issue:
11
ISSN:
1814-9332
Page Range / eLocation ID:
1491 to 1513
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Antarctic ice sheet (AIS) is sensitive to short‐term extreme meteorological events that can leave long‐term impacts on the continent's surface mass balance (SMB). We investigate the impacts of atmospheric rivers (ARs) on the AIS precipitation budget using an AR detection algorithm and a regional climate model (Modèle Atmosphérique Régional) from 1980 to 2018. While ARs and their associated extreme vapor transport are relatively rare events over Antarctic coastal regions (∼3 days per year), they have a significant impact on the precipitation climatology. ARs are responsible for at least 10% of total accumulated snowfall across East Antarctica (localized areas reaching 20%) and a majority of extreme precipitation events. Trends in AR annual frequency since 1980 are observed across parts of AIS, most notably an increasing trend in Dronning Maud Land; however, interannual variability in AR frequency is much larger. This AR behavior appears to drive a significant portion of annual snowfall trends across East Antarctica, while controlling the interannual variability of precipitation across most of the AIS. AR landfalls are most likely when the circumpolar jet is highly amplified during blocking conditions in the Southern Ocean. There is a fingerprint of the Southern Annular Mode (SAM) on AR variability in West Antarctica with SAM+ (SAM−) favoring increased AR frequency in the Antarctic Peninsula (Amundsen‐Ross Sea coastline). Given the relatively large influence ARs have on precipitation across the continent, it is advantageous for future studies of moisture transport to Antarctica to consider an AR framework especially when considering future SMB changes.

     
    more » « less
  2. Abstract. Paleoclimate archives, such as high-resolution ice core records, provide ameans to investigate past climate variability. Until recently, the Law Dome(Dome Summit South site) ice core record remained one of fewmillennial-length high-resolution coastal records in East Antarctica. A newice core drilled in 2017/2018 at Mount Brown South, approximately 1000 kmwest of Law Dome, provides an additional high-resolution record that willlikely span the last millennium in the Indian Ocean sector of EastAntarctica. Here, we compare snow accumulation rates and sea saltconcentrations in the upper portion (∼ 20 m) of three MountBrown South ice cores and an updated Law Dome record over the period1975–2016. Annual sea salt concentrations from the Mount Brown South siterecord preserve a stronger signal for the El Niño–Southern Oscillation(ENSO; austral winter and spring, r = 0.533, p < 0.001, Multivariate El Niño Index) compared to a previously defined Law Dome record of summer sea salt concentrations (November–February, r = 0.398, p = 0.010, SouthernOscillation Index). The Mount Brown South site record and Law Dome recordpreserve inverse signals for the ENSO, possibly due to longitudinalvariability in meridional transport in the southern Indian Ocean, althoughfurther analysis is needed to confirm this. We suggest that ENSO-related seasurface temperature anomalies in the equatorial Pacific drive atmosphericteleconnections in the southern mid-latitudes. These anomalies areassociated with a weakening (strengthening) of regional westerly winds tothe north of Mount Brown South that correspond to years of low (high) seasalt deposition at Mount Brown South during La Niña (El Niño)events. The extended Mount Brown South annual sea salt record (whencomplete) may offer a new proxy record for reconstructions of the ENSO overthe recent millennium, along with improved understanding of regionalatmospheric variability in the southern Indian Ocean, in addition to thatderived from Law Dome. 
    more » « less
  3. The treatment of surface melt, runoff, and the snow-firn-ice transition in ice-sheet models (ISMs) is becoming increasingly important, as mobile liquid on Greenland and Antarctic flanks increases due to climate warming in the next century and beyond. Simple Positive Degree Day (PDD)-based box models used in some ISMs crudely capture liquid storage and refreezing, but need to be extended to include vertical structure through the whole firn-ice column, as in some regional climate models (RCMs). This is a necessary prelude to modeling the flow of mobile meltwater in channel-river-moulin systems, and routing to the base and/or margins of the ice sheet. More detailed column models of snow and firn exist, that include compaction, grain size, and other processes. Some focus on dry-snow zones, and have fine vertical resolution spanning the entire firn column with Lagrangian tracking of annual snow layers (e.g., FirnMICE: Lundin et al., J. Glac., 2017). However, they are mostly too computationally expensive for ISM applications, and are not designed for ablation zones with meltwater and bare ice in summer. More general models are used in some RCMs that include similar physics but with fewer layers, and are applicable both to accumulation and ablation zones. Here we formulate a new snow-firn model, similar to those in RCMs, for use within an ice-sheet model. A limited number of vertical layers is used (∼10), with Lagrangian tracking of layers, grain size evolution, compaction, ice lenses, liquid melting, storage, percolation and runoff. Surface melting is computed from linearized net atmospheric energy fluxes, not from PDDs. The model is tested using the FirnMICE experiments, and using gridded RACMO2 modern climate input over Greenland, seeking to balance model performance with computational efficiency. 
    more » « less
  4. Abstract. During the concluding phase of the NASA OperationIceBridge (OIB), we successfully completed two airborne measurementcampaigns (in 2018 and 2021, respectively) using a compact S and C band radarinstalled on a Single Otter aircraft and collected data over Alaskanmountains, ice fields, and glaciers. This paper reports seasonal snow depthsderived from radar data. We found large variations in seasonalradar-inferred depths with multi-modal distributions assuming a constantrelative permittivity for snow equal to 1.89. About 34 % of the snowdepths observed in 2018 were between 3.2 and 4.2 m, and close to 30 % of thesnow depths observed in 2021 were between 2.5 and 3.5 m. We observed snowstrata in ice facies, combined percolation and wet-snow facies, and dry-snow facies fromradar data and identified the transition areas from wet-snow facies to icefacies for multiple glaciers based on the snow strata and radarbackscattering characteristics. Our analysis focuses on the measured strataof multiple years at the caldera of Mount Wrangell (K'elt'aeni) to estimate the localsnow accumulation rate. We developed a method for using our radar readingsof multi-year strata to constrain the uncertain parameters of interpretationmodels with the assumption that most of the snow layers detected by theradar at the caldera are annual accumulation layers. At a 2004 ice core and2005 temperature sensor tower site, the locally estimated average snowaccumulation rate is ∼2.89 m w.e. a−1 between the years2003 and 2021. Our estimate of the snow accumulation rate between 2005 and2006 is 2.82 m w.e. a−1, which matches closely to the 2.75 m w.e. a−1 inferred from independent ground-truth measurements made the sameyear. The snow accumulation rate between the years 2003 and 2021 also showeda linear increasing trend of 0.011 m w.e. a−2. This trend iscorroborated by comparisons with the surface mass balance (SMB) derived forthe same period from the regional atmospheric climate model MAR (ModèleAtmosphérique Régional). According to MAR data, which show anincrease of 0.86 ∘C in this area for the period of 2003–2021, thelinear upward trend is associated with the increase in snowfall and rainfallevents, which may be attributed to elevated global temperatures. Thefindings of this study confirmed the viability of our methodology, as wellas its underlying assumptions and interpretation models.

     
    more » « less
  5. Because few ice core records from the Himalayas exist, understanding of the onset and timing of the human impact on the atmosphere of the “roof of the world” remains poorly constrained. We report a continuous 500-y trace metal ice core record from the Dasuopu glacier (7,200 m, central Himalayas), the highest drilling site on Earth. We show that an early contamination from toxic trace metals, particularly Cd, Cr, Mo, Ni, Sb, and Zn, emerged at high elevation in the Himalayas at the onset of the European Industrial Revolution (∼1780 AD). This was amplified by the intensification of the snow accumulation (+50% at Dasuopu) likely linked to the meridional displacement of the winter westerlies from 1810 until 1880 AD. During this period, the flux and crustal enrichment factors of the toxic trace metals were augmented by factors of 2 to 4 and 2 to 6, respectively. We suggest this contamination was the consequence of the long-range transport and wet deposition of fly ash from the combustion of coal (likely from Western Europe where it was almost entirely produced and used during the 19th century) with a possible contribution from the synchronous increase in biomass burning emissions from deforestation in the Northern Hemisphere. The snow accumulation decreased and dry winters were reestablished in Dasuopu after 1880 AD when lower than expected toxic metal levels were recorded. This indicates that contamination on the top of the Himalayas depended primarily on multidecadal changes in atmospheric circulation and secondarily on variations in emission sources during the last 200 y.

     
    more » « less