Abstract An analytical method for diagnosing the interaction between the primary and secondary circulations of a tropical cyclone (TC) and vortex intensification is developed. It includes a diagnostic equation describing the mean secondary circulation of a TC in an unbalanced framework by including the radial eddy forcing in the analytical system. It is an extension of the Sawyer–Eliassen equation (SEE) developed from the strict gradient-wind balance. This generalized SEE (GSEE) remediates some of the limitations of SEE and can be used to diagnose both balanced and unbalanced dynamical processes during the TC evolution. Using GSEE, this study investigates how the tangential and radial eddy forcing affects the TC intensification simulated by the Hurricane Weather Research and Forecasting Model (HWRF) with differently parameterized turbulent mixing. The diagnostic results show that the supergradient component of radial eddy forcing contributes positively to the acceleration of the peak tangential wind, whereas the subgradient component of the radial eddy forcing tends to lower the height of peak tangential wind. The relative importance of negative and positive effects of tangential eddy forcing on TC intensification varies depending on the details of turbulence parameterization. For a turbulent kinetic energy (TKE) scheme used in this study, a large sloping curvature of mixing length in the low troposphere causes the tangential eddy forcing to produce a net positive tangential wind tendency near the location of the peak tangential wind. In contrast, a small sloping curvature of mixing length generates a net negative tangential wind tendency at the peak tangential wind. Significance StatementThe interaction between the primary and secondary circulations of a tropical cyclone (TC) plays a key role in TC evolution. Historically, the secondary circulation induced by turbulence and convection is often described by a so-called Sawyer–Eliassen equation (SEE). While SEE has provided much insight into the TC dynamics in the past, the assumption of gradient-wind balance used by SEE prevents it from understanding TC unbalanced dynamics. To remediate the limitation, we extended the analytical framework into the unbalanced regime by including radial eddy forcing in the analytical system and derived a generalized SEE (GSEE). Using GSEE, this study investigates how tangential and radial eddy forcing affects TC intensification. The result highlights the importance of multiple roles that turbulence plays in the intensification of TCs.
more »
« less
A Simple Family of Tropical Cyclone Models
This review discusses a simple family of models capable of simulating tropical cyclone life cycles, including intensification, the formation of the axisymmetric version of boundary layer shocks, and the development of an eyewall. Four models are discussed, all of which are axisymmetric, f-plane, three-layer models. All four models have the same parameterizations of convective mass flux and air–sea interaction, but differ in their formulations of the radial and tangential equations of motion, i.e., they have different dry dynamical cores. The most complete model is the primitive equation (PE) model, which uses the unapproximated momentum equations for each of the three layers. The simplest is the gradient balanced (GB) model, which replaces the three radial momentum equations with gradient balance relations and replaces the boundary layer tangential wind equation with a diagnostic equation that is essentially a high Rossby number version of the local Ekman balance. Numerical integrations of the boundary layer equations confirm that the PE model can produce boundary layer shocks, while the GB model cannot. To better understand these differences in GB and PE dynamics, we also consider two hybrid balanced models (HB1 and HB2), which differ from GB only in their treatment of the boundary layer momentum equations. Because their boundary layer dynamics is more accurate than GB, both HB1 and HB2 can produce results more similar to the PE model, if they are solved in an appropriate manner.
more »
« less
- Award ID(s):
- 1841326
- PAR ID:
- 10432494
- Date Published:
- Journal Name:
- Meteorology
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2674-0494
- Page Range / eLocation ID:
- 149 to 170
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study examines axisymmetric and asymmetric aspects of secondary eyewall formation (SEF) in tropical cyclones (TCs) by applying a nonlinear boundary layer model to tangential wind composites of observed TCs with and without SEF. SEF storms were further analyzed at times prior to and after SEF, as defined by the emergence of a secondary maximum in axisymmetric tangential wind. The model is used to investigate the steady‐state boundary layer response to the free‐tropospheric pressure forcing derived from observed tangential wind fields. The axisymmetric response to the Post‐SEF wind field displayed a secondary updraft maximum associated with a mature secondary eyewall; the model correctly produced no secondary updraft for non‐SEF storms. The Pre‐SEF response also exhibited a secondary updraft associated with an incipient secondary eyewall largely due to the broadened outer tangential wind field that commonly precedes SEF events. The asymmetric wind fields and model response were analyzed relative to the 850–200 hPa environmental wind shear vector. In Pre‐SEF storms, the tangential wind field displayed a broadened tangential wind structure in the downshear quadrants. The boundary layer response shows a downwind shift toward the left‐of‐shear quadrants, exhibiting the clearest secondary maxima in updrafts, tangential wind, and radial inflow. This left‐of‐shear response was the leading contributor to the secondary eyewall signals in the Pre‐SEF axisymmetric response. Sensitivity analyses confirmed the robustness of these asymmetric signals. These findings suggest that enhanced tangential wind and boundary layer updrafts in the left‐of‐shear sectors may be early indicators and critical features of SEF in sheared TCs.more » « less
-
Abstract In this study, the boundary layer tangential wind budget equation following the radius of maximum wind, together with an assumed thermodynamical quasi-equilibrium boundary layer, is used to derive a new equation for tropical cyclone (TC) intensification rate (IR). A TC is assumed to be axisymmetric in thermal-wind balance, with eyewall convection coming into moist slantwise neutrality in the free atmosphere above the boundary layer as the storm intensifies, as found recently based on idealized numerical simulations. An ad hoc parameter is introduced to measure the degree of congruence of the absolute angular momentum and the entropy surfaces. The new IR equation is evaluated using results from idealized ensemble full-physics axisymmetric numerical simulations. Results show that the new IR equation can reproduce the time evolution of the simulated TC intensity. The new IR equation indicates a strong dependence of IR on both TC intensity and the corresponding maximum potential intensity (MPI). A new finding is the dependence of TC IR on the square of the MPI in terms of the near-surface wind speed for any given relative intensity. Results from some numerical integrations of the new IR equation also suggest the finite-amplitude nature of TC genesis. In addition, the new IR theory is also supported by some preliminary results based on best-track TC data over the North Atlantic Ocean and eastern and western North Pacific Ocean. As compared with the available time-dependent theories of TC intensification, the new IR equation can provide a realistic intensity-dependent IR during weak intensity stage as seen in observations.more » « less
-
Abstract Recent studies have demonstrated the sensitivity of simulated tropical cyclone (TC) intensity to horizontal diffusion in numerical models. It is unclear whether such sensitivity comes from the horizontal diffusion in or above the boundary layer. To address this issue, both an Ooyama-type model and a full-physics model are used to conduct sensitivity experiments with reduced or enlarged horizontal mixing length (lh) in the boundary layer and/or in the free atmosphere. Results from both models show that enlarging (reducing)lhthroughout the model domain considerably reduces (increases) the TC intensification rate and quasi-steady intensity. A new finding is that changinglhabove the boundary layer imposes a much greater influence than that in the boundary layer. Largelhabove the boundary layer is found to effectively reduce the radial gradient of tangential wind inside the radius of maximum tangential wind and thus the inward flux of absolute vorticity, reducing the positive tangential wind tendency and the TC intensification rate and the steady-state intensity. In contrast, although largerlhin the boundary layer reduces the boundary layer tangential wind tendency, it also leads to the more inward-penetrated inflow and thus enhances the inward flux of absolute vorticity, which offsets part of the direct negative contribution by horizontal diffusion, making the net change in tangential wind tendency not obvious. Results from three-dimensional simulations also show that the resolved eddies contribute negatively to TC spinup whenlhis small, while its effect weakens whenlhis enhanced either in or above the boundary layer.more » « less
-
null (Ed.)Abstract Although the development of supergradient winds is well understood, the importance of supergradient winds in tropical cyclone (TC) intensification is still under debate. One view is that the spinup of the eyewall occurs by the upward advection of high tangential momentum associated with supergradient winds from the boundary layer. The other view argues that the upward advection of supergradient winds by eyewall updrafts results in an outward agradient force, leading to the formation of a shallow outflow layer immediately above the inflow boundary layer. As a result, the spinup of tangential wind in the eyewall by the upward advection of supergradient wind from the boundary layer is largely offset by the spindown of tangential wind due to the outflow resulting from the agradient force. In this study, the net contribution by the upward advection of the supergradient wind component from the boundary layer to the intensification rate and final intensity of a TC are quantified through ensemble sensitivity numerical experiments using an axisymmetric TC model. Results show that consistent with the second view above, the positive upward advection of the supergradient wind component from the boundary layer by eyewall updrafts is largely offset by the negative radial advection due to the outflow resulting from the outward agradient force. As a result, the upward advection of the supergradient wind component contributes little (often less than 4%) to the intensification rate and but it contributes about 10%–15% to the final intensity of the simulated TC due to the enhanced inner-core air–sea thermodynamic disequilibrium.more » « less
An official website of the United States government

