skip to main content


Title: Receiver Function Analysis Reveals Lateral Variations in Temperature and Water Content in the Mantle Transition Zone Beneath Eastern North America
Abstract

Using recently collected high‐resolution seismic data along a dense linear transect across Ohio, West Virginia, and Virginia (called Mid‐Atlantic Geophysical Integrative Collaboration (MAGIC) profile), we analyze P‐to‐S receiver functions to investigate the undulations of the mantle transition zone (MTZ) discontinuities (410‐ and 660‐km) beneath the central Appalachian region. Our results incorporating the effects of local crustal and mantle structures suggest shallowing of both the 410‐ and the 660‐km discontinuities from the northwest (inland) to the southeast (coast) along MAGIC profile. Hydro‐thermal upwelling beneath the eastern U.S. coastal plain due to a hydrated MTZ and hot upwelling return flow associated with the descending lower mantle Farallon slab is consistent with our observations of MTZ structure considering 3D velocity heterogeneity. The inferred hydrous hot upwelling rising into the upper mantle may trigger dehydration melting atop the 410‐km discontinuity, which may help to explain the presence of a low velocity upper mantle anomaly beneath the region today.

 
more » « less
NSF-PAR ID:
10432545
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
12
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    By taking advantage of the recent availability of a broadband seismic data set from Networks NR and BX covering the entire country of Botswana, we conduct a systematic receiver function investigation of the topography of the 410 and 660 km discontinuities beneath the incipient Okavango rift zone (ORZ) in northern Botswana and its adjacent Archean‐Proterozoic tectonic provinces in southern Africa. Similar to a previous mantle transition zone (MTZ) discontinuity study using data from a 1‐D profile traversing the ORZ, a normal MTZ thickness is observed in most parts of the study area. This is inconsistent with the existence of widespread positive thermal anomalies in the MTZ and further implies that active thermal upwelling from the lower mantle plays an insignificant role in the initiation of continental rifting. The results also suggest that cold temperature presumably associated with thick cratonic keels has indiscernible influence on the thermal structure of the MTZ. The expanded data set reveals several isolated areas of slight (~10 km or smaller) MTZ thinning. The largest of such areas has a NE‐SW elongated shape and is mostly caused by relative deepening of the 410 km discontinuity rather than shallowing of the 660 km discontinuity. These characteristics are different from those expected for a typical mantle plume. We speculate that the thinner‐than‐normal MTZ may be induced by minor thermal upwelling associated with late Mesozoic‐early Cenozoic lithospheric delamination, a recently proposed mechanism that might be responsible for the high elevation of southern Africa.

     
    more » « less
  2. Abstract

    Alaska is a tectonically active region with a long history of subduction and terrane accretion, but knowledge of its deep seismic structure is limited by a relatively sparse station distribution. By combining data from the EarthScope Transportable Array and other regional seismic networks, we obtain a high‐resolution state‐wide map of the Moho and upper‐mantle discontinuities beneath Alaska using teleseismic SH‐wave reverberations. Crustal thickness is generally correlated with elevation and the deepest Moho is in the region with basal accretion of the subducted Yakutat plate, consistent with its higher density due to a more mafic composition. The crustal thickness in the Brooks Range agrees with the prediction based on Airy isostasy and the weak free‐air gravity anomaly, suggesting that this region probably does not have significant density anomalies. We also resolve the 410, 520, and 660 discontinuities in most regions, with a thickened mantle transition zone (MTZ) and a normal depth difference between the 520 and 660 discontinuities (d660‐d520) under central Alaska, indicating the presence of the subducted Pacific slab in the upper MTZ. A near‐normal MTZ and a significantly smaller d660‐d520 are resolved under southeastern Alaska, suggesting potential mantle upwelling in the lower MTZ. Beneath the Alaska Peninsula, the thinned MTZ implies that the Pacific slab may not have reached the MTZ in this region, which is also consistent with recent tomography models. Overall, the results demonstrate a bent or segmented Pacific slab with varying depths under central Alaska and the Alaska Peninsula.

     
    more » « less
  3. SUMMARY

    Long-period (T > 10 s) shear wave reflections between the surface and reflecting boundaries below seismic stations are useful for studying phase transitions in the mantle transition zone (MTZ) but shear-velocity heterogeneity and finite-frequency effects complicate the interpretation of waveform stacks. We follow up on a recent study by Shearer & Buehler (hereafter SB19) of the top-side shear wave reflection Ssds as a probe for mapping the depths of the 410-km and 660-km discontinuities beneath the USArray. Like SB19, we observe that the recorded Ss410s-S and Ss660s-S traveltime differences are longer at stations in the western United States than in the central-eastern United States. The 410-km and 660-km discontinuities are about 40–50 km deeper beneath the western United States than the central-eastern United States if Ss410s-S and Ss660s-S traveltime differences are transformed to depth using a common-reflection point (CRP) mapping approach based on a 1-D seismic model (PREM in our case). However, the east-to-west deepening of the MTZ disappears in the CRP image if we account for 3-D shear wave velocity variations in the mantle according to global tomography. In addition, from spectral-element method synthetics, we find that ray theory overpredicts the traveltime delays of the reverberations. Undulations of the 410-km and 660-km discontinuities are underestimated when their wavelengths are smaller than the Fresnel zones of the wave reverberations in the MTZ. Therefore, modelling of layering in the upper mantle must be based on 3-D reference structures and accurate calculations of reverberation traveltimes.

     
    more » « less
  4. Abstract

    The mantle transition zone (MTZ) plays an important role in modulating material transport between the upper mantle and the lower mantle. Constraining this transport is essential for understanding geochemical reservoirs, hydration cycles, and the evolution of the Earth. Slabs and hotspots are assumed to be the dominant locations of transport. However, the degree of material transport in other areas is debated. We applyP‐to‐Sreceiver functions to an amphibious data set from Cascadia to image the MTZ discontinuities beneath mid‐ocean ridges, a hotspot, and a subduction zone. We find a MTZ thinned by 10 ± 6 km beneath the ridges and by 8 ± 4 km beneath the base of the slab, closely resembling the 660 discontinuity topography. Depressions on the 410 discontinuity are smaller, 5 ± 2 km on average, focused in the north and the south and accompanied by supra‐410 discontinuity melt phases. The depressions occur away from locations of uplifted 660 discontinuity, but near slow seismic velocity anomalies imaged in the upper mantle. This suggests lower mantle upwellings occur beneath ridges and beneath the base of slabs but stall in the transition zone, with upper mantle convection determining upward material transport from the transition zone. Therefore, upper mantle dynamics play a larger role in determining transfer than typically assumed.

     
    more » « less
  5. Abstract The Transantarctic Mountains (TAMs), Antarctica, exhibit anomalous uplift and volcanism and have been associated with regions of thermally perturbed upper mantle that may or may not be connected to lower mantle processes. To determine if the anomalous upper mantle beneath the TAMs connects to the lower mantle, we interrogate the mantle transition zone (MTZ) structure under the TAMs and adjacent parts of East Antarctica using 12,500+ detections of P-to-S conversions from the 410 and 660 km discontinuities. Our results show distinct zones of thinner-than-global-average MTZ (∼205–225 km, ∼10%–18% thinner) beneath the central TAMs and southern Victoria Land, revealing throughgoing convective thermal anomalies (i.e., mantle plumes) that connect prominent upper and lower mantle low-velocity regions. This suggests that the thermally perturbed upper mantle beneath the TAMs and Ross Island may have a lower mantle origin, which could influence patterns of volcanism and TAMs uplift. 
    more » « less