skip to main content


Title: Topography of the 410 and 660 km Discontinuities Beneath the Cenozoic Okavango Rift Zone and Adjacent Precambrian Provinces
Abstract

By taking advantage of the recent availability of a broadband seismic data set from Networks NR and BX covering the entire country of Botswana, we conduct a systematic receiver function investigation of the topography of the 410 and 660 km discontinuities beneath the incipient Okavango rift zone (ORZ) in northern Botswana and its adjacent Archean‐Proterozoic tectonic provinces in southern Africa. Similar to a previous mantle transition zone (MTZ) discontinuity study using data from a 1‐D profile traversing the ORZ, a normal MTZ thickness is observed in most parts of the study area. This is inconsistent with the existence of widespread positive thermal anomalies in the MTZ and further implies that active thermal upwelling from the lower mantle plays an insignificant role in the initiation of continental rifting. The results also suggest that cold temperature presumably associated with thick cratonic keels has indiscernible influence on the thermal structure of the MTZ. The expanded data set reveals several isolated areas of slight (~10 km or smaller) MTZ thinning. The largest of such areas has a NE‐SW elongated shape and is mostly caused by relative deepening of the 410 km discontinuity rather than shallowing of the 660 km discontinuity. These characteristics are different from those expected for a typical mantle plume. We speculate that the thinner‐than‐normal MTZ may be induced by minor thermal upwelling associated with late Mesozoic‐early Cenozoic lithospheric delamination, a recently proposed mechanism that might be responsible for the high elevation of southern Africa.

 
more » « less
Award ID(s):
1919789
NSF-PAR ID:
10379787
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
125
Issue:
9
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Using recently collected high‐resolution seismic data along a dense linear transect across Ohio, West Virginia, and Virginia (called Mid‐Atlantic Geophysical Integrative Collaboration (MAGIC) profile), we analyze P‐to‐S receiver functions to investigate the undulations of the mantle transition zone (MTZ) discontinuities (410‐ and 660‐km) beneath the central Appalachian region. Our results incorporating the effects of local crustal and mantle structures suggest shallowing of both the 410‐ and the 660‐km discontinuities from the northwest (inland) to the southeast (coast) along MAGIC profile. Hydro‐thermal upwelling beneath the eastern U.S. coastal plain due to a hydrated MTZ and hot upwelling return flow associated with the descending lower mantle Farallon slab is consistent with our observations of MTZ structure considering 3D velocity heterogeneity. The inferred hydrous hot upwelling rising into the upper mantle may trigger dehydration melting atop the 410‐km discontinuity, which may help to explain the presence of a low velocity upper mantle anomaly beneath the region today.

     
    more » « less
  2. Abstract

    The mantle transition zone (MTZ) plays an important role in modulating material transport between the upper mantle and the lower mantle. Constraining this transport is essential for understanding geochemical reservoirs, hydration cycles, and the evolution of the Earth. Slabs and hotspots are assumed to be the dominant locations of transport. However, the degree of material transport in other areas is debated. We applyP‐to‐Sreceiver functions to an amphibious data set from Cascadia to image the MTZ discontinuities beneath mid‐ocean ridges, a hotspot, and a subduction zone. We find a MTZ thinned by 10 ± 6 km beneath the ridges and by 8 ± 4 km beneath the base of the slab, closely resembling the 660 discontinuity topography. Depressions on the 410 discontinuity are smaller, 5 ± 2 km on average, focused in the north and the south and accompanied by supra‐410 discontinuity melt phases. The depressions occur away from locations of uplifted 660 discontinuity, but near slow seismic velocity anomalies imaged in the upper mantle. This suggests lower mantle upwellings occur beneath ridges and beneath the base of slabs but stall in the transition zone, with upper mantle convection determining upward material transport from the transition zone. Therefore, upper mantle dynamics play a larger role in determining transfer than typically assumed.

     
    more » « less
  3. Abstract

    A total of 10,586P‐to‐Sradial receiver functions recorded by 64 broadband seismic stations were utilized to image the 410 and 660 km discontinuities (d410 and d660, respectively) bordering the mantle transition zone (MTZ) beneath the Sumatra Island, the Malay Peninsula, and the western margin of the South China Sea. The d410 and d660 were imaged by stacking receiver functions in successive circular bins with a radius of 1°, after moveout corrections based on the 1‐D IASP91 Earth model. The resulting apparent depths of the discontinuities exhibit significant and spatially systematic variations. The apparent depths of the d410 and d660 range from 382 to 459 km and 637 to 700 km with an average of 406 ± 13 and 670± 12 km, respectively, while the corresponding values for the MTZ thickness are 217 to 295 km and 261 ± 13 km. Underneath southern Sumatra and adjacent regions, the MTZ is characterized by an uplifted d410 and a depressed d660. While the former is probably caused by the low temperature anomaly, the latter is most likely related to a combination of the low temperature anomaly and dehydration associated with the subducted Australian Plate that has reached at least the d660. In contrast, an abnormally thin MTZ is imaged to the southwest of the Toba Caldera. This observation, when combined with results from previous seismic tomography studies, can be explained by advective thermal upwelling through a slab window.

     
    more » « less
  4. SUMMARY

    The Earth's mantle transition zone (MTZ) plays a key role in the thermal and compositional interactions between the upper and lower mantle. Seismic anisotropy provides useful information about mantle deformation and dynamics across the MTZ. However, seismic anisotropy in the MTZ is difficult to constrain from surface wave or shear wave splitting measurements. Here, we investigate the sensitivity to anisotropy of a body wave method, SS precursors, through 3-D synthetic modelling and apply it to real data. Our study shows that the SS precursors can distinguish the anisotropy originating from three depths: shallow upper mantle (80–220 km), deep upper mantle above 410 km, and MTZ (410–660 km). Synthetic resolution tests indicate that SS precursors can resolve $\ge $3 per cent azimuthal anisotropy where data have an average signal-to-noise ratio (SNR = 7) and sufficient azimuthal coverage. To investigate regional sensitivity, we apply the stacking and inversion methods to two densely sampled areas: the Japan subduction zone and a central Pacific region around the Hawaiian hotspot. We find evidence for significant VS anisotropy (15.3 ± 9.2 per cent) with a trench-perpendicular fast direction (93° ± 5°) in the MTZ near the Japan subduction zone. We attribute the azimuthal anisotropy to the grain-scale shape-preferred orientation of basaltic materials induced by the shear deformation within the subducting slab beneath NE China. In the central Pacific study region, there is a non-detection of MTZ anisotropy, although modelling suggests the data coverage should allow us to resolve at least 3 per cent anisotropy. Therefore, the Hawaiian mantle plume has not produced detectable azimuthal anisotropy in the MTZ.

     
    more » « less
  5. Abstract

    To advance our comprehension of the complex geological history and mantle dynamics in the North Atlantic region, we employ all available broadband seismic data recorded in Greenland to reveal an abnormal mantle transition zone (MTZ) structure. Central and eastern Greenland exhibits depressed 410 and 660 km discontinuities (d410 and d660, respectively) bordering the MTZ, indicative of a substantial thermal anomaly associated with an underlying plume, surpassing the 1,800°C threshold for post‐garnet phase transitions at the d660. Variations in MTZ thickness across Greenland stem from differing temperature anomalies at the d410 and d660, possibly linked to a tilted plume within the MTZ. These findings corroborate geodynamic models, elucidating the interaction between post‐garnet phase transitions and upwelling plumes. The results shed light on the origin of the enigmatic Icelandic hotspot track and its influence on the thermal and lithospheric structures beneath Greenland.

     
    more » « less