Abstract Sustainably produced biomaterials can greatly improve the biocompatibility of wearable sensor technologies while reducing the energy and environmental impacts of materials fabrication and disposal. An electronic sensor device in which the sensing element is a thin (≈2 µm) film of electrically conductive protein nanowires harvested from the microbeGeobacter sulfurreducensis developed. The sensor rapidly responds to changes in humidity with high selectivity and sensitivity. The sensor is integrated on a flexible substrate as a wearable device, enabling real‐time monitoring of physiological conditions such as respiration and skin hydration. Noncontact body tracking is demonstrated with an array of sensors that detect a humidity gradient at distance from the skin with high sensitivity. Humidity gradients induce directional charge transport in the protein nanowires films, enabling the production of a current signal without applying an external voltage bias for powerless sensing. These results demonstrate the considerable promise for developing protein nanowire‐based wearable sensor devices.
more »
« less
Wearable bioelectronics fabricated in situ on skins
Abstract In recent years, wearable bioelectronics has rapidly expanded for diagnosing, monitoring, and treating various pathological conditions from the skin surface. Although the devices are typically prefabricated as soft patches for general usage, there is a growing need for devices that are customized in situ to provide accurate data and precise treatment. In this perspective, the state-of-the-art in situ fabricated wearable bioelectronics are summarized, focusing primarily on Drawn-on-Skin (DoS) bioelectronics and other in situ fabrication methods. The advantages and limitations of these technologies are evaluated and potential future directions are suggested for the widespread adoption of these technologies in everyday life.
more »
« less
- Award ID(s):
- 2227063
- PAR ID:
- 10432581
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Flexible Electronics
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2397-4621
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent advancements in wearable sensor technologies have enabled real-time monitoring of physiological and biochemical signals, opening new opportunities for personalized healthcare applications. However, conventional wearable devices often depend on rigid electronics components for signal transduction, processing, and wireless communications, leading to compromised signal quality due to the mechanical mismatches with the soft, flexible nature of human skin. Additionally, current computing technologies face substantial challenges in efficiently processing these vast datasets, with limitations in scalability, high power consumption, and a heavy reliance on external internet resources, which also poses security risks. To address these challenges, we have developed a miniaturized, standalone, chip-less wearable neuromorphic system capable of simultaneously monitoring, processing, and analyzing multimodal physicochemical biomarker data (i.e., metabolites, cardiac activities, and core body temperature). By leveraging scalable printing technology, we fabricated artificial synapses that function as both sensors and analog processing units, integrating them alongside printed synaptic nodes into a compact wearable system embedded with a medical diagnostic algorithm for multimodal data processing and decision making. The feasibility of this flexible wearable neuromorphic system was demonstrated in sepsis diagnosis and patient data classification, highlighting the potential of this wearable technology for real-time medical diagnostics.more » « less
-
Abstract Conducting polymers, such as thep-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have enabled the development of an array of opto- and bio-electronics devices. However, to make these technologies truly pervasive, stable and easily processable,n-doped conducting polymers are also needed. Despite major efforts, non-type equivalents to the benchmark PEDOT:PSS exist to date. Here, we report on the development of poly(benzimidazobenzophenanthroline):poly(ethyleneimine) (BBL:PEI) as an ethanol-basedn-type conductive ink. BBL:PEI thin films yield ann-type electrical conductivity reaching 8 S cm−1, along with excellent thermal, ambient, and solvent stability. This printablen-type mixed ion-electron conductor has several technological implications for realizing high-performance organic electronic devices, as demonstrated for organic thermoelectric generators with record high power output andn-type organic electrochemical transistors with a unique depletion mode of operation. BBL:PEI inks hold promise for the development of next-generation bioelectronics and wearable devices, in particular targeting novel functionality, efficiency, and power performance.more » « less
-
Abstract Paper, an inexpensive material with natural biocompatibility, non‐toxicity, and biodegradability, allows for affordable and cost‐effective substrates for unconventional advanced electronics, often called papertronics. On the other hand, polymeric elastomers have shown to be an excellent success for substrates of soft bioelectronics, providing stretchability in skin wearable technology for continuous sensing applications. Although both materials hold their unique advantageous characteristics, merging both material properties into a single electronic substrate reimagines paper‐based bioelectronics for wearable and patchable applications in biosensing, energy generation and storage, soft actuators, and more. Here, a breathable, light‐weighted, biocompatible engineered stretchable paper is reported via coaxial nonwoven microfibers for unconventional bioelectronic substrates. The stretchable papers allow intimate bioconformability without adhesive through coaxial electrospinning of a cellulose acetate polymer (sheath) and a silicone elastomer (core). The fabricated cellulose‐silicone fibers exhibit a greater percent strain than commercially available paper while retaining hydrophilicity, biocompatibility, combustibility, disposable, and other natural characteristics of paper. Moreover, the nonwoven stretchable cellulose‐silicone fibrous mat can adapt conventional printing and fabrication process for paper‐based electronics, an essential aspect of advanced bioelectronic manufacturing.more » « less
-
Abstract The global cost of diabetes care exceeds $1 trillion each year with more than $327 billion being spent in the United States alone. Despite some of the advances in diabetes care including continuous glucose monitoring systems and insulin pumps, the technology associated with managing diabetes has largely remained unchanged over the past several decades. With the rise of wearable electronics and novel functional materials, the field is well‐poised for the next generation of closed‐loop diabetes care. Wearable glucose sensors implanted within diverse platforms including skin or on‐tooth tattoos, skin‐mounted patches, eyeglasses, contact lenses, fabrics, mouthguards, and pacifiers have enabled noninvasive, unobtrusive, and real‐time analysis of glucose excursions in ambulatory care settings. These wearable glucose sensors can be integrated with implantable drug delivery systems, including an insulin pump, glucose responsive insulin release implant, and islets transplantation, to form self‐regulating closed‐loop systems. This review article encompasses the emerging trends and latest innovations of wearable glucose monitoring and implantable insulin delivery technologies for diabetes management with a focus on their advanced materials and construction. Perspectives on the current unmet challenges of these strategies are also discussed to motivate future technological development toward improved patient care in diabetes management.more » « less
An official website of the United States government
