skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heterotrophy, microbiome, and location effects on restoration efficacy of the threatened coral Acropora palmata
Abstract The iconic and threatened Caribbean coral,Acropora palmata, is an essential reef-ecosystem engineer. Understanding the processes underpinning this coral’s survival and growth is essential to restoring this foundational species. Here, we compared replicateA. palmatacolonies transplanted along 350 km of Florida’s offshore coral reef to determine holobiont and/or environmental variables that predict transplant success. We found a west-to-east gradient in coral physiology coupled with site-specific coral-associated microbiomes. Interestingly, no variables were linked to coral genet. Our results suggest that the unique oceanographic conditions with periodic upwelling events in the Dry Tortugas provide corals with greater opportunity for heterotrophy that in turn enhances coral growth and survivorship, and positively influences the microbiome. Our findings indicate that restoration efforts in the Dry Tortugas, and other places exhibiting higher food availability, could be most effective forA. palmata.  more » « less
Award ID(s):
1838667
PAR ID:
10432586
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
4
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mesophotic reefs (30‐150 m) have been proposed as potential refugia that facilitate the recovery of degraded shallow reefs following acute disturbances such as coral bleaching and disease. However, because of the technical difficulty of collecting samples, the connectivity of adjacent mesophotic reefs is relatively unknown compared with shallower counterparts. We used genotyping by sequencing to assess fine‐scale genetic structure of Montastraea cavernosa at two sites at Pulley Ridge, a mesophotic coral reef ecosystem in the Gulf of Mexico, and downstream sites along the Florida Reef Tract. We found differentiation between reefs at Pulley Ridge (~68 m) and corals at downstream upper mesophotic depths in the Dry Tortugas (28–36 m) and shallow reefs in the northern Florida Keys (Key Biscayne, ~5 m). The spatial endpoints of our study were distinct, with the Dry Tortugas as a genetic intermediate. Most striking were differences in population structure among northern and southern sites at Pulley Ridge that were separated by just 12km. Unique patterns of clonality and outlier loci allele frequency support these sites as different populations and suggest that the long‐distance horizontal connectivity typical of shallow‐water corals may not be typical for mesophotic systems in Florida and the Gulf of Mexico. We hypothesize that this may be due to the spawning of buoyant gametes, which commits propagules to the surface, resulting in greater dispersal and lower connectivity than typically found between nearby shallow sites. Differences in population structure over small spatial scales suggest that demographic constraints and/or environmental disturbances may be more variable in space and time on mesophotic reefs compared with their shallow‐water counterparts. 
    more » « less
  2. Reef-building crustose coralline algae (CCA) are known to facilitate the settlement and metamorphosis of scleractinian coral larvae. In recent decades, CCA coverage has fallen globally and degrading environmental conditions continue to reduce coral survivorship, spurring new restoration interventions to rebuild coral reef health. In this study, naturally produced chemical compounds (metabolites) were collected from two pantropical CCA genera to isolate and classify those that induce coral settlement. In experiments using four ecologically important Caribbean coral species, we demonstrate the applicability of extracted, CCA-derived metabolites to improve larval settlement success in coral breeding and restoration efforts. Tissue-associated CCA metabolites induced settlement of one coral species,Orbicella faveolata, while metabolites exuded by CCA (exometabolites) induced settlement of three species:Acropora palmata,Colpophyllia natansandOrbicella faveolata. In a follow-up experiment, CCA exometabolites fractionated and preserved using two different extraction resins induced the same level of larval settlement as the unfractionated positive control exometabolites. The fractionated CCA exometabolite pools were characterized using liquid chromatography tandem mass spectrometry, yielding 145 distinct molecular subnetworks that were statistically defined as CCA-derived and could be classified into 10 broad chemical classes. Identifying these compounds can reveal their natural prevalence in coral reef habitats and facilitate the development of new applications to enhance larval settlement and the survival of coral juveniles. 
    more » « less
  3. Abstract The elkhorn coral,Acropora palmata, was historically a major reef-building species in the Caribbean, but has suffered devastating declines in recent decades. Despite significant restoration efforts in Florida, the marine heatwave of 2023 caused severe bleaching and mortality to both wild and restored colonies. To understand the disastrous impacts, we evaluated the variation in heat tolerance among Florida’sA. palmatapopulation prior to the event. In 2022, we used rapid acute heat stress assays to assess the thermal tolerance of 172 adult colonies (125 unique genets) from four nurseries. We found variation in thermal tolerance (4.17°C range in ED50) that was attributed to nursery location (17.2% of variation), genet (25.9%), and symbiont abundance (15.6%). Algal symbiont type, however, was the strongest predictor of thermal performance, with the few (n = 10) colonies hostingDurusdiniumbeing, on average, 1.9°C more thermally tolerant than corals hostingSymbiodinium. This difference would have decreased the effective heat stress accumulation during the 2023 event by ~92%. Therefore, despite considerable variation in thermal tolerance among Florida’s elkhorn corals, hostingDurusdiniumappears to be the most effective mechanism for surviving such extreme heat stress. These findings suggest that restoration strategies that focus on rearing sexually derivedA. palmatarecruits withDurusdinium, followed by outplanting to suitable environments, may improve survival during future heatwaves. Combined with efforts to introduce additional elkhorn diversity from populations outside Florida, these approaches may be the most effective interventions to promote the continued survival of Florida’s elkhorn corals in the face of rapid climate change. 
    more » « less
  4. van_der_Hooft, Justin_J J (Ed.)
    ABSTRACT Coral reefs are experiencing unprecedented loss in coral cover due to increased incidence of disease and bleaching events. Thus, understanding mechanisms of disease susceptibility and resilience, which vary by species, is important. In this regard, untargeted metabolomics serves as an important hypothesis-building tool enabling the delineation of molecular factors underlying disease susceptibility or resilience. In this study, we characterize metabolomes of four species of visually healthy stony corals, includingMeandrina meandrites,Orbicella faveolata,Colpophyllia natans, andMontastraea cavernosa, collected at least a year before stony coral tissue loss disease reached the Dry Tortugas, Florida, and demonstrate that both symbiont and host-derived biochemical pathways vary by species. Metabolomes ofMeandrina meandritesdisplayed minimal intraspecies variability and the highest biological activity against coral pathogens when compared to other species in this study. The application of advanced metabolite annotation methods enabled the delineation of several pathways underlying interspecies variability. Specifically, endosymbiont-derived vitamin E family compounds, betaine lipids, and host-derived acylcarnitines were among the top predictors of interspecies variability. Since several metabolite features that contributed to inter- and intraspecies variation are synthesized by the endosymbiotic Symbiodiniaceae, which could be a major source of these compounds in corals, our data will guide further investigations into these Symbiodiniaceae-derived pathways. IMPORTANCEPrevious research profiling gene expression, proteins, and metabolites produced during thermal stress have reported the importance of endosymbiont-derived pathways in coral bleaching resistance. However, our understanding of interspecies variation in these pathways among healthy corals and their role in diseases is limited. We surveyed the metabolomes of four species of healthy corals with differing susceptibilities to the devastating stony coral tissue loss disease and applied advanced annotation approaches in untargeted metabolomics to determine the interspecies variation in host and endosymbiont-derived pathways. Using this approach, we propose the survey of immune markers such as vitamin E family compounds, acylcarnitines, and other metabolites to infer their role in resilience to coral diseases. As time-resolved multi-omics datasets are generated for disease-impacted corals, our approach and findings will be valuable in providing insight into the mechanisms of disease resistance. 
    more » « less
  5. Abstract As the major form of coral reef regime shift, stony coral to macroalgal transitions have received considerable attention. In the Caribbean, however, regime shifts in which scleractinian corals are replaced by octocoral assemblages hold potential for maintaining reef associated communities. Accordingly, forecasting the resilience of octocoral assemblages to future disturbance regimes is necessary to understand these assemblages' capacity to maintain reef biodiversity. We parameterised integral projection models quantifying the survival, growth, and recruitment of the octocorals,Antillogorgia americana,Gorgonia ventalina, andEunicea flexuosa,in St John, US Virgin Islands, before, during, and after severe hurricane disturbance. Using these models, we forecast the density of populations of each species under varying future hurricane regimes. We demonstrate that although hurricanes reduce population growth,A. americana,G. ventalina, andE. flexuosaeach display a capacity for quick recovery following storm disturbance. Despite this recovery potential, we illustrate how the population dynamics of each species correspond with a longer-term decline in their population densities. Despite their resilience to periodic physical disturbance events, ongoing global change jeopardises the future viability of octocoral assemblages. 
    more » « less