Abstract Anthropogenic climate change is intensifying natural disturbance regimes, which negatively affects some species, while benefiting others. This could alter the trait composition of ecological communities and influence resilience to disturbance. We investigated how the frequency and intensification of the regional storm regime (and likely other disturbances) is altering coral species composition and in turn resistance and recovery. We developed regional databases of coral cover and composition (3144 reef locations from 1970 to 2017) and of the path and strength of cyclonic storms in the region (including 10,058 unique storm-reef intersections). We found that total living coral cover declined steadily through 2017 (the median annual loss rate was ~ 0.25% per year). Our results also indicate that despite the observed increase in the intensity of Atlantic cyclonic storms, their effect on coral cover has decreased markedly. This could be due in part to selection for disturbance-resistant taxa in response to the intensifying disturbance regime. We found that storms accelerated the loss of threatened acroporid corals but had no measurable effect on the cover of more resilient “weedy” corals, thereby increasing their relative cover. Although resistance to disturbance has increased, recovery rates have slowed due to the dominance of small, slow-growing species. This feedback loop is locking coral communities into a low-functioning state dominated by weedy species with limited ecological or societal value. 
                        more » 
                        « less   
                    
                            
                            The recovery of octocoral populations following periodic disturbance masks their vulnerability to persistent global change
                        
                    
    
            Abstract As the major form of coral reef regime shift, stony coral to macroalgal transitions have received considerable attention. In the Caribbean, however, regime shifts in which scleractinian corals are replaced by octocoral assemblages hold potential for maintaining reef associated communities. Accordingly, forecasting the resilience of octocoral assemblages to future disturbance regimes is necessary to understand these assemblages' capacity to maintain reef biodiversity. We parameterised integral projection models quantifying the survival, growth, and recruitment of the octocorals,Antillogorgia americana,Gorgonia ventalina, andEunicea flexuosa,in St John, US Virgin Islands, before, during, and after severe hurricane disturbance. Using these models, we forecast the density of populations of each species under varying future hurricane regimes. We demonstrate that although hurricanes reduce population growth,A. americana,G. ventalina, andE. flexuosaeach display a capacity for quick recovery following storm disturbance. Despite this recovery potential, we illustrate how the population dynamics of each species correspond with a longer-term decline in their population densities. Despite their resilience to periodic physical disturbance events, ongoing global change jeopardises the future viability of octocoral assemblages. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1756381
- PAR ID:
- 10489954
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Coral Reefs
- Volume:
- 43
- Issue:
- 2
- ISSN:
- 0722-4028
- Format(s):
- Medium: X Size: p. 333-345
- Size(s):
- p. 333-345
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Unlike reef-building, scleractinian corals, Caribbean soft corals (octocorals) have not suffered marked declines in abundance associated with anthropogenic ocean warming. Both octocorals and reef-building scleractinians depend on a nutritional symbiosis with single-celled algae living within their tissues. In both groups, increased ocean temperatures can induce symbiont loss (bleaching) and coral death. Multiple heat waves from 2014 to 2016 resulted in widespread damage to reef ecosystems and provided an opportunity to examine the bleaching response of three Caribbean octocoral species. Symbiont densities declined during the heat waves but recovered quickly, and colony mortality was low. The dominant symbiont genotypes within a host generally did not change, and all colonies hosted symbiont species in the genusBreviolum.Their association with thermally tolerant symbionts likely contributes to the octocoral holobiont’s resistance to mortality and the resilience of their symbiont populations. The resistance and resilience of Caribbean octocorals offer clues for the future of coral reefs.more » « less
- 
            Abstract Standing dead structures of habitat‐forming organisms (e.g., dead trees, coral skeletons, oyster shells) killed by a disturbance are material legacies that can affect ecosystem recovery processes. Many ecosystems are subject to different types of disturbance that either remove biogenic structures or leave them intact. Here we used a mathematical model to quantify how the resilience of coral reef ecosystems may be differentially affected following structure‐removing and structure‐retaining disturbance events, focusing in particular on the potential for regime shifts from coral to macroalgae. We found that dead coral skeletons could substantially diminish coral resilience if they provided macroalgae refuge from herbivory, a key feedback associated with the recovery of coral populations. Our model shows that the material legacy of dead skeletons broadens the range of herbivore biomass over which coral and macroalgae states are bistable. Hence, material legacies can alter resilience by modifying the underlying relationship between a system driver (herbivory) and a state variable (coral cover).more » « less
- 
            Abstract The health of coral reef benthic and fish communities is implicitly connected, yet typically studied and managed separately. By developing a coupled reef population model that connects coral populations and reef fish biomass through the habitat complexity that corals build and fish live among, we aim to address this gap by holistically quantifying ecological feedbacks and responses to ecological stressors. We explored the impacts of fishing effort in conjunction with three types of ecological disturbances as they propagated through a coral reef ecosystem: (1) a disturbance that disproportionately affected small, bio‐energetically vulnerable colonies, (2) a disturbance that predominantly affected large, mechanically vulnerable colonies, and (3) a disturbance that affected colonies of all sizes randomly. We found that joint coral and fish population recovery was fastest and most complete under events affecting small colonies, followed by recovery from disturbances affecting random sizes, and lastly large‐colony disturbances. These results suggest that the retention versus loss of large coral colonies with high reproductive potential critically influenced population recovery. Low fishing levels maintained fish and coral populations and allowed for recovery after disturbances, whereas high fishing levels prevented recovery due to greater fish‐dependent coral mortality. Finally, we tested various formulations of the relationship between coral size and habitat complexity (i.e., exponential, linear, logarithmic) that constrain fish carrying capacity. All formulations led to similar population projections in most disturbance scenarios, but there were exceptions where the timing and trajectory of recovery differed, such as faster and greater recovery potential when complexity is logarithmic with respect to coral size. These findings suggest that fishing and habitat complexity mediate the recovery of coral reef populations, emphasizing the importance of describing linkages between coral size distribution and reef habitat structure. Furthermore, our results highlight the utility of the coupled‐model framework for understanding and managing the impact of disturbances at ecosystem scales.more » « less
- 
            Abstract Coral abundance continues to decline on tropical reefs around the world, and this trend suggests that coral reefs may not persist beyond the current century. In contrast, this study describes the near-complete mortality of corals on the outer reef (10 m and 17 m depth) of the north shore of Mo’orea, French Polynesia, from 2005 to 2010, followed by unprecedented recovery from 2011 to 2017. Intense corallivory and a cyclone drove coral cover from 33–48% to <3% by 2010, but over the following seven years, recovery occurred through rapid population growth (up to 12% cover y−1) to 25–74% cover by 2017. The thirteen-year, U-shape trajectory of coral cover over time created by the loss and replacement of millions of corals through sexual reproduction underscores the potential for beneficial genetic responses to environmental conditions for at least one genus,Pocillopora. The high ecological resilience of this coral community appears to have been enhanced by variation among genera in the susceptibility to declining cover, and the capacity for population growth (i.e., response diversity). These results suggest that the outer coral communities of Mo’orea may be poised for genetic changes that could affect their capacity to persistence.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
