skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Invited Letter: Siemens Digital Industries Works with Education Partners to Offer Hands-On Learning
Siemens DI believes the future of manufacturing must be taught in our schools today. To facilitate this, we provide several educational programs that partner with technical colleges to provide hands-on learning and experience on our automation software and hardware. These programs include Siemens Cooperates with Education (SCE), Siemens Mechatronics Systems Certification Program (SMSCP), Lifelong Educational Advantage Program (LEAP), and Siemens Go-PLM. Participating as an industrial employer with the Preparing Technicians for the Future of Work ATE project team has provided Siemens with the ability to contribute to the tactile execution of educational priorities and influence the strategic direction of industry’s collaboration with educational institutions in a positive fashion. The ability to share concepts and practices with others in industry has contributed to changes in our approaches to educational partners and customer conversations.  more » « less
Award ID(s):
1839567
PAR ID:
10432688
Author(s) / Creator(s):
Editor(s):
Kazarinoff, Peter
Date Published:
Journal Name:
Journal of advanced technological education
Volume:
2
Issue:
1
ISSN:
2832-9627
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Our community college will utilize funds from an NSF ATE grant to develop and integrate and innovative teaching model designed to prepare future technicians for industry by incorporating soft skills training, career exploration, and entrepreneurship. This collaborative model will formally connect our Center for Workforce Development (CWD) sector with our for-credit engineering technology program, our Business and Innovation Department and with our educational partners. This innovative project will enable our college to strengthen our technician education programs, formalize connections with CWD and our Business and Innovation Department, and prepare students for industry jobs through shadowing opportunities, employment, entrepreneurship, internships, and real-world, collaborative outreach. Our community college will collaborate with our Industry Advisory Board (IAB), CWD, and educational partners to (a) integrate an innovative teaching model for technician education that includes a formalized shadowing and internship program and connects students to opportunities in business and entrepreneurship; (b) require students to take a manufacturing laboratory course to introduce hands-on industry-related experiences; (c) include certifications that award digital badges, military training, and industry experience in our engineering technology program. It is our intention that this model for an enhanced educational experience designed to increase workforce readiness of students will become a blueprint for other programs and institutions. 
    more » « less
  2. School-to-career pathways not only represent a student’s journey, but they also represent the educational program context; to understand the pathway, one must understand the geographic, political, and social conditions that led to the program’s creation. To determine the kinds of pathways advanced manufacturing (AM) programs in rural Northwest Florida community and state colleges enabled for their students, we interviewed faculty and administrators about their AM programs’ historical emergence. In this paper, we present five detailed AM program “origin stories,” using a multiple case study methodology. These origin stories allowed us to explore how rural AM postsecondary programs have evolved in organizational structure, curriculum content, employer relations, and student pathways facilitation. We gathered data to discern 1) commonalities and unique features in AM programs’ initiation impetus; 2) current AM program, faculty, and student profiles; and 3) significant AM program challenges and priorities in rural settings, such as institutional commitment to long-term economic health. In our findings, we highlight how active participation in diverse community and industry collaborations serves to establish and grow AM educational pathways tailored explicitly for the immediate community. For example, participants share innovative partnership programming and certificate development that enabled seminal two-year engineering technology and engineering technician education opportunities. We also identified that the ability of rural programs to offer instruction in advanced physical spaces requires an ongoing commitment to appropriate resources, support that is variously obtained from the institution, local employers, or some combination of stakeholders. Through our methodology and findings, we aim to contribute to a holistic understanding of how to study school-to-career pathways. This study investigates how rural AM programs can advance to achieve competitive growth. 
    more » « less
  3. Transdisciplinary learning can be viewed as the pinnacle of integrated teaching, whereas the acquisition/application of knowledge/skills are driven by compelling socio-scientific problems that demand the transcending of disciplinary boundaries and the blending of diverse viewpoints/practices to develop innovative solutions over time. With a variety of educational transformation initiatives happening at universities, DT programs can help shape the way that undergraduate learning occurs. So how do DT programs leverage their value related to transdisciplinary learning through design/innovation practice to reach new audiences while also sustaining programs that develop teachers? To provide an answer, this poster will highlight a transdisciplinary program, titled Mission Meaning Making (M3), that was developed to provide a new cross-college learning experience for undergraduate students focused on design and innovation. The M3 program has been created to synergize the key strengths of three partnering units/disciplines (DT, anthropology, and business) to prepare undergraduates for addressing contemporary challenges in innovative, and transdisciplinary ways. The poster will provide details/research related to the M3 program and explore how DT can strive to make a broader impact on campuses. 
    more » « less
  4. The percentages of women in undergraduate electrical and computer engineering programs at Iowa State University averages below the national average. An external assessment of diversity and inclusion provided an impetus for faculty, staff and administrators to discuss issues, focus on specific areas, and collaborate on planning. In particular, the department has teamed up with the university's Program for Women in Science and Engineering to better integrate their programs with departmental activities. This has resulted in an enhanced student experience model being designed for undergraduate ECE women. The model leverages effective practices including learning communities, leadership and professional development, academic support and advising for the ISU Engineering Basic Program, academic preparation for the ECE field, and state and national resources for inclusive ECE career awareness, recruiting and teaching. The WI-ECSEL Initiative has been designed to improve diversity and inclusion in Iowa State's electrical, computer, and software engineering programs; improve educational pathways including transfer transitions from community colleges; provide a supportive and integrated student experience; establish a community of practice for faculty; and use research to inform practice. 
    more » « less
  5. The Engineering Research Centers (ERCs), funded by the National Science Foundation (NSF), play an important role in improving engineering education, bridging engineering academia and broad communities, and promoting a culture of diversity and inclusion. Each ERC must partner with an independent evaluation team to annually assess their performance and impact on progressing education, connecting community, and building diversified culture. This evaluation is currently performed independently (and in isolation), which leads to inconsistent evaluations and a redundant investment of ERCs’ resources into such tasks (e.g. developing evaluation instruments). These isolated efforts by ERCs to quantitatively evaluate their education programs also typically lack adequate sample size within a single center, which limits the validity and reliability of the quantitative analyses. Three ERCs, all associated with a large southwest university in the United States, worked collaboratively to overcome sample size and measure inconsistency concerns by developing a common quantitative instrument that is capable of evaluating any ERC’s education and diversity impacts. The instrument is the result of a systematic process with comparing and contrasting each ERC’s existing evaluation tools, including surveys and interview protocols. This new, streamlined tool captures participants’ overall experience as part of the ERC by measuring various constructs including skillset development, perception of diversity and inclusion, future plans after participating in the ERC, and mentorship received from the ERC. Scales and embedded items were designed broadly for possible use with both yearlong (e.g. graduate and undergraduate student, and postdoctoral scholars) and summer program (Research Experience for Undergraduates, Research Experience for Teachers, and Young Scholar Program) participants. The instrument was distributed and tested during Summer 2019 with participants in the summer programs from all three ERCs. The forthcoming paper will present the new common cross-ERC evaluation instrument, demonstrate the effort of collecting data across all three ERCs, present preliminary findings, and discuss collaborative processes and challenges. The preliminary implication for this work is the ability to directly compare educational programs across ERCs. The authors also believe that this tool can provide a fast start for new ERCs on how to evaluate their educational programs. 
    more » « less