skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Ductile Deformation of the Lithospheric Mantle
The strength of lithospheric plates is a central component of plate tectonics, governed by brittle processes in the shallow portion of the plate and ductile behavior in the deeper portion. We review experimental constraints on ductile deformation of olivine, the main mineral in the upper mantle and thus the lithosphere. Olivine deforms by four major mechanisms: low-temperature plasticity, dislocation creep, dislocation-accommodated grain-boundary sliding (GBS), and diffusion-accommodated grain-boundary sliding (diffusion creep). Deformation in most of the lithosphere is dominated by GBS, except in shear zones—in which diffusion creep dominates—and in the brittle-ductile transition—in which low-temperature plasticity may dominate. We find that observations from naturally deformed rocks are consistent with extrapolation of the experimentally constrained olivine flow laws to geological conditions but that geophysical observations predict a weaker lithosphere. The causes of this discrepancy are unresolved but likely reside in the uncertainty surrounding processes in the brittle-ductile transition, at which the lithosphere is strongest. ▪ Ductile deformation of the lithospheric mantle is constrained by experimental data for olivine. ▪ Olivine deforms by four major mechanisms: low-temperature plasticity, dislocation creep, dislocation-accommodated grain-boundary sliding, and diffusion creep. ▪ Observations of naturally deformed rocks are consistent with extrapolation of olivine flow laws from experimental conditions. ▪ Experiments predict stronger lithosphere than geophysical observations, likely due to gaps in constraints on deformation in the brittle-ductile transition.  more » « less
Award ID(s):
2113408 1832868
NSF-PAR ID:
10432692
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual Review of Earth and Planetary Sciences
Volume:
51
Issue:
1
ISSN:
0084-6597
Page Range / eLocation ID:
581 to 609
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Seismic anisotropy produced by aligned olivine in oceanic lithosphere offers a window into mid‐ocean ridge (MOR) dynamics. Yet, interpreting anisotropy in the context of grain‐scale deformation processes and strain observed in laboratory experiments and natural olivine samples has proven challenging due to incomplete seismological constraints and length scale differences spanning orders of magnitude. To bridge this observational gap, we estimate an in situ elastic tensor for oceanic lithosphere using co‐located compressional‐ and shear‐wavespeed anisotropy observations at the NoMelt experiment located on ∼70 Ma seafloor. The elastic model for the upper 7 km of the mantle, NoMelt_SPani7, is characterized by a fast azimuth parallel to the fossil‐spreading direction, consistent with corner‐flow deformation fabric. We compare this model with a database of 123 petrofabrics from the literature to infer olivine crystallographic orientations and shear strain accumulated within the lithosphere. Direct comparison to olivine deformation experiments indicates strain accumulation of 250%–400% in the shallow mantle. We find evidence for D‐type olivine lattice‐preferred orientation (LPO) with fast [100] parallel to the shear direction and girdled [010] and [001] crystallographic axes perpendicular to shear. D‐type LPO implies similar amounts of slip on the (010)[100] and (001)[100] easy slip systems during MOR spreading; we hypothesize that grain‐boundary sliding during dislocation creep relaxes strain compatibility, allowing D‐type LPO to develop in the shallow lithosphere. Deformation dominated by dislocation‐accommodated grain‐boundary sliding (disGBS) has implications for in situ stress and grain size during MOR spreading and implies grain‐size dependent deformation, in contrast to pure dislocation creep.

     
    more » « less
  2. Abstract

    Synthesized polycrystalline samples composed of enstatite and olivine with different volumetric ratios were deformed in compression under anhydrous conditions in a Paterson gas‐medium apparatus at 1150–1300°C, an oxygen fugacity buffered at Ni/NiO, and confining pressures of 300 or 450 MPa (protoenstatite or orthoenstatite fields). Mechanical data suggest a transition from diffusion to dislocation creep with increasing differential stress for all compositions. Microstructural analyses by optical and scanning electron microscopy reveal well‐mixed aggregates and homogeneous deformation. Crystallographic preferred orientations measured by electron backscatter diffraction are consistent with activation of the slip systems (010)[100] and (010)[001] for olivine and (100)[001] and (010)[001] for enstatite, as expected at these conditions. Nonlinear least‐squares fitting to the full data set from each experiment allowed the determination of dislocation creep flow laws for the different mixtures. The stress exponent is 3.5 for all compositions, and the apparent activation energies increase slightly as a function of enstatite volume fraction. Within the limits of experimental uncertainties, all two‐phase aggregates have strengths that lie between the uniform strain rate (Taylor) and the uniform stress (Sachs) bounds calculated using the dislocation creep flow laws for olivine and enstatite. Calculation of the Taylor and Sachs bounds at strain rate and temperature conditions expected in nature (but not extrapolating in pressure) indicates that using the dislocation creep flow law for monomineralic olivine aggregates provides a good estimate of the viscosity of olivine‐orthopyroxene rocks deforming by dislocation creep in the deeper lithosphere and asthenosphere.

     
    more » « less
  3. Abstract

    The rheology of oceanic lithosphere is important to our understanding of mantle dynamics and to the emergence and manifestations of plate tectonics. Data from experimental rock mechanics suggest rheology is dominated by three different deformation mechanisms including frictional sliding, low‐temperature plasticity, and high‐temperature creep, from shallow depths at relatively cold temperatures to large depths at relatively high temperatures. However, low‐temperature plasticity is poorly understood. This study further constrains low‐temperature plasticity by comparing observations of flexure at the Hawaiian Islands to predictions from 3‐D viscoelastic loading models with a realistic lithospheric rheology of frictional sliding, low‐temperature plasticity, and high‐temperature creep. We find that previously untested flow laws significantly underpredict the amplitude and overpredict the wavelength of flexure at Hawaii. These flow laws can, however, reproduce observations if they are weakened by a modest reduction (25–40%) in the plastic activation energy. Lithospheric rheology is strongly temperature dependent, and so we explore uncertainties in the thermal structure with different conductive cooling models and convection simulations of plume‐lithosphere interactions. Convection simulations show that thermal erosion from a plume only perturbs the lithospheric temperature significantly at large depths so that when it is added to the thermal structure, it produces a small increase in deflection. In addition, defining the temperature profile by the cooling plate model produces only modest weakening relative to the cooling half‐space model. Therefore, variation of the thermal structure does not appear to be a viable means of bringing laboratory‐derived flow laws for low‐temperature plasticity into agreement with geophysical field observations and modeling.

     
    more » « less
  4. Abstract

    The bottom of the lithosphere is characterized by a thermally controlled transition from brittle to ductile deformation. While the mechanical behavior of rocks firmly within the brittle and ductile regimes is relatively well understood, how the transition operates remains elusive. Here, we study the mechanical properties of pure olivine gouge from 100 to 500°C under 100 MPa pore‐fluid pressure in a triaxial deformation apparatus as a proxy for the mechanical properties of the upper mantle across the brittle‐ductile transition. We describe the mechanical data with a rate‐, state‐, and temperature‐dependent constitutive law with multiple thermally activated deformation mechanisms. The stress power exponents decrease from 70 ± 10 in the brittle regime to 17 ± 3 and 4 ± 2 in the semi‐brittle and ductile regimes, respectively. The mechanical model consistently explains the mechanical behavior of olivine gouge across the brittle‐ductile transition, capturing the gradual evolution from cataclasis to crystal plasticity.

     
    more » « less
  5. Abstract

    Plastic deformation of olivine at relatively low temperatures (i.e., low‐temperature plasticity) likely controls the strength of the lithospheric mantle in a variety of geodynamic contexts. Unfortunately, laboratory estimates of the strength of olivine deforming by low‐temperature plasticity vary considerably from study to study, limiting confidence in extrapolation to geological conditions. Here we present the results of deformation experiments on olivine single crystals and aggregates conducted in a deformation‐DIA at confining pressures of 5 to 9 GPa and temperatures of 298 to 1473 K. These results demonstrate that, under conditions in which low‐temperature plasticity is the dominant deformation mechanism, fine‐grained samples are stronger at yield than coarse‐grained samples, and the yield stress decreases with increasing temperature. All samples exhibited significant strain hardening until an approximately constant flow stress was reached. The magnitude of the increase in stress from the yield stress to the flow stress was independent of grain size and temperature. Cyclical loading experiments revealed a Bauschinger effect, wherein the initial yield strength is higher than the yield strength during subsequent cycles. Both strain hardening and the Bauschinger effect are interpreted to result from the development of back stresses associated with long‐range dislocation interactions. We calibrated a constitutive model based on these observations, and extrapolation of the model to geological conditions predicts that the strength of the lithosphere at yield is low compared to previous experimental predictions but increases significantly with increasing strain. Our results resolve apparent discrepancies in recent observational estimates of the strength of the oceanic lithosphere.

     
    more » « less