skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ductile Deformation of the Lithospheric Mantle
The strength of lithospheric plates is a central component of plate tectonics, governed by brittle processes in the shallow portion of the plate and ductile behavior in the deeper portion. We review experimental constraints on ductile deformation of olivine, the main mineral in the upper mantle and thus the lithosphere. Olivine deforms by four major mechanisms: low-temperature plasticity, dislocation creep, dislocation-accommodated grain-boundary sliding (GBS), and diffusion-accommodated grain-boundary sliding (diffusion creep). Deformation in most of the lithosphere is dominated by GBS, except in shear zones—in which diffusion creep dominates—and in the brittle-ductile transition—in which low-temperature plasticity may dominate. We find that observations from naturally deformed rocks are consistent with extrapolation of the experimentally constrained olivine flow laws to geological conditions but that geophysical observations predict a weaker lithosphere. The causes of this discrepancy are unresolved but likely reside in the uncertainty surrounding processes in the brittle-ductile transition, at which the lithosphere is strongest. ▪ Ductile deformation of the lithospheric mantle is constrained by experimental data for olivine. ▪ Olivine deforms by four major mechanisms: low-temperature plasticity, dislocation creep, dislocation-accommodated grain-boundary sliding, and diffusion creep. ▪ Observations of naturally deformed rocks are consistent with extrapolation of olivine flow laws from experimental conditions. ▪ Experiments predict stronger lithosphere than geophysical observations, likely due to gaps in constraints on deformation in the brittle-ductile transition.  more » « less
Award ID(s):
2113408 1832868
PAR ID:
10432692
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual Review of Earth and Planetary Sciences
Volume:
51
Issue:
1
ISSN:
0084-6597
Page Range / eLocation ID:
581 to 609
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The rheology of oceanic lithosphere is important to our understanding of mantle dynamics and to the emergence and manifestations of plate tectonics. Data from experimental rock mechanics suggest rheology is dominated by three different deformation mechanisms including frictional sliding, low‐temperature plasticity, and high‐temperature creep, from shallow depths at relatively cold temperatures to large depths at relatively high temperatures. However, low‐temperature plasticity is poorly understood. This study further constrains low‐temperature plasticity by comparing observations of flexure at the Hawaiian Islands to predictions from 3‐D viscoelastic loading models with a realistic lithospheric rheology of frictional sliding, low‐temperature plasticity, and high‐temperature creep. We find that previously untested flow laws significantly underpredict the amplitude and overpredict the wavelength of flexure at Hawaii. These flow laws can, however, reproduce observations if they are weakened by a modest reduction (25–40%) in the plastic activation energy. Lithospheric rheology is strongly temperature dependent, and so we explore uncertainties in the thermal structure with different conductive cooling models and convection simulations of plume‐lithosphere interactions. Convection simulations show that thermal erosion from a plume only perturbs the lithospheric temperature significantly at large depths so that when it is added to the thermal structure, it produces a small increase in deflection. In addition, defining the temperature profile by the cooling plate model produces only modest weakening relative to the cooling half‐space model. Therefore, variation of the thermal structure does not appear to be a viable means of bringing laboratory‐derived flow laws for low‐temperature plasticity into agreement with geophysical field observations and modeling. 
    more » « less
  2. Abstract The bottom of the lithosphere is characterized by a thermally controlled transition from brittle to ductile deformation. While the mechanical behavior of rocks firmly within the brittle and ductile regimes is relatively well understood, how the transition operates remains elusive. Here, we study the mechanical properties of pure olivine gouge from 100 to 500°C under 100 MPa pore‐fluid pressure in a triaxial deformation apparatus as a proxy for the mechanical properties of the upper mantle across the brittle‐ductile transition. We describe the mechanical data with a rate‐, state‐, and temperature‐dependent constitutive law with multiple thermally activated deformation mechanisms. The stress power exponents decrease from 70 ± 10 in the brittle regime to 17 ± 3 and 4 ± 2 in the semi‐brittle and ductile regimes, respectively. The mechanical model consistently explains the mechanical behavior of olivine gouge across the brittle‐ductile transition, capturing the gradual evolution from cataclasis to crystal plasticity. 
    more » « less
  3. Abstract Plastic deformation of olivine at relatively low temperatures (i.e., low‐temperature plasticity) likely controls the strength of the lithospheric mantle in a variety of geodynamic contexts. Unfortunately, laboratory estimates of the strength of olivine deforming by low‐temperature plasticity vary considerably from study to study, limiting confidence in extrapolation to geological conditions. Here we present the results of deformation experiments on olivine single crystals and aggregates conducted in a deformation‐DIA at confining pressures of 5 to 9 GPa and temperatures of 298 to 1473 K. These results demonstrate that, under conditions in which low‐temperature plasticity is the dominant deformation mechanism, fine‐grained samples are stronger at yield than coarse‐grained samples, and the yield stress decreases with increasing temperature. All samples exhibited significant strain hardening until an approximately constant flow stress was reached. The magnitude of the increase in stress from the yield stress to the flow stress was independent of grain size and temperature. Cyclical loading experiments revealed a Bauschinger effect, wherein the initial yield strength is higher than the yield strength during subsequent cycles. Both strain hardening and the Bauschinger effect are interpreted to result from the development of back stresses associated with long‐range dislocation interactions. We calibrated a constitutive model based on these observations, and extrapolation of the model to geological conditions predicts that the strength of the lithosphere at yield is low compared to previous experimental predictions but increases significantly with increasing strain. Our results resolve apparent discrepancies in recent observational estimates of the strength of the oceanic lithosphere. 
    more » « less
  4. Abstract Following the reanalysis of individual experimental runs of some widely cited studies (Jain et al., 2018,https://doi.org/10.1002/2017JB014847), we revisit the global data analysis of Korenaga and Karato (2008,https://doi.org/10.1029/2007JB005100) with a significantly improved version of their Markov chain Monte Carlo inversion. Their algorithm, previously corrected by Mullet et al. () to minimize potential parameter bias, is further modified here to estimate more efficiently interrun biases in global data sets. Using the refined Markov chain Monte Carlo inversion technique, we simultaneously analyze experimental data on the deformation of olivine aggregates compiled from different studies. Realistic composite rheological models, including both diffusion and dislocation creep, are adopted, and the role of dislocation‐accommodated grain boundary sliding is also investigated. Furthermore, the influence of interrun biases on inversion results is studied using experimental and synthetic data. Our analysis shows that existing data can tightly constrain the grain‐size exponent for diffusion creep at ∼2, which is different from the value commonly assumed (p= 3). Different data sets and model assumptions, however, yield nonoverlapping estimates on other flow‐law parameters, and the flow‐law parameters for grain boundary sliding are poorly resolved in most cases. We thus provide a few plausible candidate flow‐law models for olivine rheology to facilitate future geodynamic modeling. The availability of more data that explore a wider range of experimental conditions, especially higher pressures, is essential to improve our understanding of upper mantle rheology. 
    more » « less
  5. Abstract To study the mechanical behavior of polymineralic rocks, we performed deformation experiments on two‐phase aggregates of olivine (Ol) + ferropericlase (Per) with periclase fractions (fPer) between 0.1 and 0.8. Each sample was deformed in torsion atT = 1523 K,P = 300 MPa at a constant strain rate to a final shear strain ofγ = 6 to 7. The stress‐strain data and calculated values of the stress exponent,n, indicate that Ol in our samples deformed by dislocation‐accommodated sliding along grain interfaces while Per deformed via dislocation creep. At shear strains ofγ < 1, the strengths of samples withfPer > 0.5 match model predictions for both phases deforming at the same stress, the lower‐strength bound for two‐phase materials, while the strengths of samples withfPer < 0.5 are greater than predicted by models for both phases deforming at the same strain rate, the upper‐strength bound. These observations suggest a transition from a weak‐phase supported to a strong‐phase supported regime with decreasingfPer. Aboveγ = 4, however, the strength of all two‐phase samples is greater than those predicted by either the uniform‐stress or the uniform‐strain rate bound. We hypothesize that the high strengths in the Ol + Per system are due to the presence of phase boundaries in two‐phase samples, for which deformation is rate limited by dislocation motion along interfacial boundaries. This observation contrasts with the mechanical behavior of samples consisting of Ol + pyroxene, which are weaker, possibly due to impurities at phase boundaries. 
    more » « less