skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unrealizability Logic
We consider the problem of establishing that a program-synthesis problem is unrealizable (i.e., has no solution in a given search space of programs). Prior work on unrealizability has developed some automatic techniques to establish that a problem is unrealizable; however, these techniques are all black-box , meaning that they conceal the reasoning behind why a synthesis problem is unrealizable. In this paper, we present a Hoare-style reasoning system, called unrealizability logic for establishing that a program-synthesis problem is unrealizable. To the best of our knowledge, unrealizability logic is the first proof system for overapproximating the execution of an infinite set of imperative programs. The logic provides a general, logical system for building checkable proofs about unrealizability. Similar to how Hoare logic distills the fundamental concepts behind algorithms and tools to prove the correctness of programs, unrealizability logic distills into a single logical system the fundamental concepts that were hidden within prior tools capable of establishing that a program-synthesis problem is unrealizable.  more » « less
Award ID(s):
1750965
PAR ID:
10432711
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
7
Issue:
POPL
ISSN:
2475-1421
Page Range / eLocation ID:
659 to 688
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reactive program synthesis from logical specifications has yet to match the user-friendly approach of examplebased programming for spreadsheets, despite its success in specific domains. A main challenge hindering the broader adoption of reactive synthesis is in the complexity of specification engineering in temporal logics. We map out challenges and tools that arise as users write temporal logic specifications in Temporal Stream Logic. Our goal is to provide a roadmap for future usability work that can elevate temporal specification engineering for synthesis to match the usability support available for software engineering. By generalizing these concepts, we can gain a deeper insight into the challenges people face when reasoning about the temporal behavior of their systems. 
    more » « less
  2. Mechanized verification of liveness properties for infinite programs with effects and nondeterminism is challenging. Existing temporal reasoning frameworks operate at the level of models such as traces and automata. Reasoning happens at a very low-level, requiring complex nested (co-)inductive proof techniques and familiarity with proof assistant mechanics (e.g., the guardedness checker). Further, reasoning at the level of models instead of program constructs creates a verification gap that loses the benefits of modularity and composition enjoyed by structural program logics such as Hoare Logic. To address this verification gap, and the lack of compositional proof techniques for temporal specifications, we propose Ticl, a new structural temporal logic. Using Ticl, we encode complex (co-)inductive proof techniques as structural lemmas and focus our reasoning on variants and invariants. We show that it is possible to perform compositional proofs of general temporal properties in a proof assistant, while working at a high level of abstraction. We demonstrate the benefits of Ticl by giving mechanized proofs of safety and liveness properties for programs with scheduling, concurrent shared memory, and distributed consensus, demonstrating a low proof-to-code ratio. 
    more » « less
  3. Endrullis, Jörg; Schmitz, Sylvain (Ed.)
    Kleene Algebra with Tests (KAT) provides a framework for algebraic equational reasoning about imperative programs. The recent variant Guarded KAT (GKAT) allows to reason on non-probabilistic properties of probabilistic programs. Here we introduce an extension of this framework called approximate GKAT (aGKAT), which equips GKAT with a partially ordered monoid (real numbers) enabling to express satisfaction of (deterministic) properties except with a probability up to a certain bound. This allows to represent in equational reasoning "à la KAT" proofs of probabilistic programs based on the union bound, a technique from basic probability theory. We show how a propositional variant of approximate Hoare Logic (aHL), a program logic for union bound, can be soundly encoded in our system aGKAT. We then illustrate the use of aGKAT with an example of accuracy analysis from the field of differential privacy. 
    more » « less
  4. Automated deductive program synthesis promises to generate executable programs from concise specifications, along with proofs of correctness that can be independently verified using third-party tools. However, an attempt to exercise this promise using existing proof-certification frameworks reveals significant discrepancies in how proof derivations are structured for two different purposes: program synthesis and program verification. These discrepancies make it difficult to use certified verifiers to validate synthesis results, forcing one to write an ad-hoc translation procedure from synthesis proofs to correctness proofs for each verification backend. In this work, we address this challenge in the context of the synthesis and verification of heap-manipulating programs. We present a technique for principled translation of deductive synthesis derivations (a.k.a. source proofs) into deductive target proofs about the synthesised programs in the logics of interactive program verifiers. We showcase our technique by implementing three different certifiers for programs generated via SuSLik, a Separation Logic-based tool for automated synthesis of programs with pointers, in foundational verification frameworks embedded in Coq: Hoare Type Theory (HTT), Iris, and Verified Software Toolchain (VST), producing concise and efficient machine-checkable proofs for characteristic synthesis benchmarks. 
    more » « less
  5. Kleene algebra with tests (KAT) is a foundational equational framework for reasoning about programs, which has found applications in program transformations, networking and compiler optimizations, among many other areas. In his seminal work, Kozen proved that KAT subsumes propositional Hoare logic, showing that one can reason about the (partial) correctness of while programs by means of the equational theory of KAT. In this work, we investigate the support that KAT provides for reasoning about incorrectness, instead, as embodied by O'Hearn's recently proposed incorrectness logic. We show that KAT cannot directly express incorrectness logic. The main reason for this limitation can be traced to the fact that KAT cannot express explicitly the notion of codomain, which is essential to express incorrectness triples. To address this issue, we study Kleene Algebra with Top and Tests (TopKAT), an extension of KAT with a top element. We show that TopKAT is powerful enough to express a codomain operation, to express incorrectness triples, and to prove all the rules of incorrectness logic sound. This shows that one can reason about the incorrectness of while-like programs by means of the equational theory of TopKAT. 
    more » « less