Risk has been a key factor influencing trust in Human-Automation interactions, though there is no unified tool to study its dynamics. We provide a framework for defining and assessing relative risk of automation usage through performance dynamics and apply this framework to a dataset from a previous study. Our approach allows us to explore how operators’ ability and different automation conditions impact the performance and relative risk dynamics. Our results on performance dynamics show that, on average, operators perform better (1) using automation that is more reliable and (2) using partial automation (more workload) than full automation (less workload). Our analysis of relative risk dynamics indicates that automation with higher reliability has higher relative risk dynamics. This suggests that operators are willing to take more risk for automation with higher reliability. Additionally, when the reliability of automation is lower, operators adapt their behavior to result in lower risk.
more »
« less
The Impact of Automation Conditions on Reliance Dynamics and Decision-Making
The decision process of engaging or disengaging automation has been termed reliance on automation, and it has been widely analyzed as a summary measure of automation usage rather than a dynamic measure. We provide a framework for defining temporal reliance dynamics and apply it to a data-set from a previous study. Our findings show that (1) the higher the reliability of an automated system, the larger the reliance over time; and (2) more workload created by the automation type does not significantly affect the operators’ reliance dynamics in high-reliability systems, but it does produce greater reliance in low-reliability systems. Furthermore, on average, operators with low performance make fewer decision changes and prefer to stick to their decision of using automation even if it is not performing well. Operators with high performance, on average, have a higher frequency of decision change, and therefore, their automation usage periods are shorter.
more »
« less
- Award ID(s):
- 1828010
- PAR ID:
- 10432738
- Date Published:
- Journal Name:
- Proceedings of the Human Factors and Ergonomics Society Annual Meeting
- Volume:
- 66
- Issue:
- 1
- ISSN:
- 2169-5067
- Page Range / eLocation ID:
- 721 to 725
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Autonomous systems that can assist humans with increasingly complex tasks are becoming ubiquitous. Moreover, it has been established that a human’s decision to rely on such systems is a function of both their trust in the system and their own self-confidence as it relates to executing the task of interest. Given that both under- and over-reliance on automation can pose significant risks to humans, there is motivation for developing autonomous systems that could appropriately calibrate a human’s trust or self-confidence to achieve proper reliance behavior. In this article, a computational model of coupled human trust and self-confidence dynamics is proposed. The dynamics are modeled as a partially observable Markov decision process without a reward function (POMDP/R) that leverages behavioral and self-report data as observations for estimation of these cognitive states. The model is trained and validated using data collected from 340 participants. Analysis of the transition probabilities shows that the proposed model captures the probabilistic relationship between trust, self-confidence, and reliance for all discrete combinations of high and low trust and self-confidence. The use of the proposed model to design an optimal policy to facilitate trust and self-confidence calibration is a goal of future work.more » « less
-
Understanding the impact of operator characteristics on human-automation interaction (HAI) is crucial as automation becomes pervasive. Despite extensive HAI research, the association between operator characteristics and their dependence on automation has not been thoroughly examined. This study, therefore, examines how individual characteristics affect operator dependence behaviors when interacting with automation. Through a controlled experiment involving 52 participants in a dual-task scenario, we find that operators’ decision-making style, risk propensity, and agreeableness are associated with their dependence behaviors when using automation. This research illuminates the role of personal characteristics in HAI, facilitating personalized team interactions, trust building, and enhanced performance in automated settings.more » « less
-
We conducted a meta-analysis to determine how people blindly comply with, rely on, and depend on diagnostic automation. We searched three databases using combinations of human behavior keywords with automation keywords. The period ranges from January 1996 to June 2021. In total, 8 records and a total of 68 data points were identified. As data points were nested within research records, we built multi-level models (MLM) to quantify relationships between blind compliance and positive predictive value (PPV), blind reliance and negative predictive value (NPV), and blind dependence and overall success likelihood (OSL).Results show that as the automation’s PPV, NPV, and OSL increase, human operators are more likely to blindly follow the automation’s recommendation. Operators appear to adjust their reliance behaviors more than their compliance and dependence. We recommend that researchers report specific automation trial information (i.e., hits, false alarms, misses, and correct rejections) and human behaviors (compliance and reliance) rather than automation OSL and dependence. Future work could examine how operator behaviors change when operators are not blind to raw data. Researchers, designers, and engineers could leverage understanding of operator behaviors to inform training procedures and to benefit individual operators during repeated automation use.more » « less
-
null (Ed.)Network function virtualization (NFV) technologyattracts tremendous interests from telecommunication industryand data center operators, as it allows service providers to assignresource for Virtual Network Functions (VNFs) on demand,achieving better flexibility, programmability, and scalability. Toimprove server utilization, one popular practice is to deploy besteffort (BE) workloads along with high priority (HP) VNFs whenhigh priority VNF’s resource usage is detected to be low. The keychallenge of this deployment scheme is to dynamically balancethe Service level objective (SLO) and the total cost of ownership(TCO) to optimize the data center efficiency under inherentlyfluctuating workloads. With the recent advancement in deepreinforcement learning, we conjecture that it has the potential tosolve this challenge by adaptively adjusting resource allocationto reach the improved performance and higher server utilization.In this paper, we present a closed-loop automation systemRLDRM1to dynamically adjust Last Level Cache allocationbetween HP VNFs and BE workloads using deep reinforcementlearning. The results demonstrate improved server utilizationwhile maintaining required SLO for the HP VNFs.more » « less