Urban Search and Rescue (USAR) missions often involve a need to complete tasks in hazardous environments. In such situations, human-robot teams (HRT) may be essential tools for future USAR missions. Transparency and explanation are two information exchange processes where transparency is real-time information exchange and explanation is not. For effective HRTs, certain levels of transparency and explanation must be met, but how can these modes of team communication be operationalized? During the COVID-19 pandemic, our approach to answering this question involved an iterative design process that factored in our research objectives as inputs and pilot studies with remote participants. Our final research testbed design resulted in converting an in-person task environment to a completely remote study and task environment. Changes to the study environment included: utilizing user-friendly video conferencing tools such as Zoom and a custom-built application for research administration tasks and improved modes of HRT communication that helped us avoid confounding our performance measures.
more »
« less
Trailblazing Roblox Virtual Synthetic Testbed Development for Human-Robot Teaming Studies
Virtual testbeds are fundamental to the success of research on cognitive work in safety-critical domains. A testbed that can meet researchers' objectives and create a sense of reality for participants positively impacts the research process; they have the potential to allow researchers to address questions not achievable in physical environments. This paper discusses the development of a synthetic task environment (STE) for Urban Search and Rescue (USAR) to advance the boundaries of Human-Robot Teams (HRTs) using Roblox. Virtual testbeds can simulate USAR task environments and HRT interactions. After assessing alternative STE platforms, we discovered Roblox not only met our research capabilities but also would prove invaluable for research teams without substantial coding experience. This paper outlines the design process of creating an STE to meet our research team's objectives.
more »
« less
- Award ID(s):
- 1828010
- PAR ID:
- 10432742
- Date Published:
- Journal Name:
- Proceedings of the Human Factors and Ergonomics Society Annual Meeting
- Volume:
- 66
- Issue:
- 1
- ISSN:
- 2169-5067
- Page Range / eLocation ID:
- 812 to 816
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Urban Search and Rescue (USAR) missions continue to benefit from the incorporation of human–robot teams (HRTs). USAR environments can be ambiguous, hazardous, and unstable. The integration of robot teammates into USAR missions has enabled human teammates to access areas of uncertainty, including hazardous locations. For HRTs to be effective, it is pertinent to understand the factors that influence team effectiveness, such as having shared goals, mutual understanding, and efficient communication. The purpose of our research is to determine how to (1) better establish human trust, (2) identify useful levels of robot transparency and robot explanations, (3) ensure situation awareness, and (4) encourage a bipartisan role amongst teammates. By implementing robot transparency and robot explanations, we found that the driving factors for effective HRTs rely on robot explanations that are context-driven and are readily available to the human teammate.more » « less
-
Communications infrastructures and compute resources are critical to enabling advanced science research projects. Science cyberinfrastructures must meet clear performance requirements, must be adjustable to changing requirements and must facilitate reproducibility. These characteristics can be met by a programmable infrastructure with guaranteed resources such as the BRIDGES infrastructure enabling cross Atlantic research projects. While programmability should be a foundational design principle for research cyberinfrastructures, by itself might not be sufficient to enabling scientists who have no or limited experience with advanced IT technologies operate their testbeds independent of IT support teams. The trend of offering “no code” platforms enabling users without IT core competency to achieve business goals should manifest itself in the context of research and educational infrastructures as well. In this paper we describe the architecture of a “no code” platform which would enable scientists to easily configure and modify a programmable infrastructure by using a large language model-based interface integrated with the composable services language of the infrastructure. The BRIDGES testbed is used as an example for such an integration where the functionality benefits projects operated by large, diverse teams.more » « less
-
As camera traps have grown in popularity, their utilization has expanded to numerous fields, including wildlife research, conservation, and ecological studies. The information gathered using this equipment gives researchers a precise and comprehensive understanding about the activities of animals in their natural environments. For this type of data to be useful, camera trap images must be labeled so that the species in the images can be classified and counted. This has typically been done by teams of researchers and volunteers, and it can be said that the process is at best time-consuming. With recent developments in deep learning, the process of automatically detecting and identifying wildlife using Convolutional Neural Networks (CNN) can significantly reduce the workload of research teams and free up resources so that researchers can focus on the aspects of conservation.more » « less
-
Practical testing of the latest wireless communications standards requires the availability of flexible radio frequency hardware, net-working and computing resources. We are providing a Cloud-based infrastructure which offers the necessary resources to carry out tests of the latest 5G standards. The testbed provides a Cloud-based Infrastructure as a Service. The research community can access hardware and software resources through a virtual platform that enables isolation and customization of experiments. In other words, researchers have control over the preferred experimental architecture and can run concurrent experiments on the same testbed. This paper introduces the resources that can be used to develop 5G testbeds and experiments.more » « less