skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: A Framework for Testing Chemical Reaction Networks
The use of non-traditional computing devices is growing rapidly. One paradigm of interest is chemical reaction networks (CRNs) which can model and use chemical interactions for computation. These CRNs are used to develop programs at the nanoscale for applications such as intelligent drug delivery. In practice, these programs are developed in simulation environments, and then compiled into physical systems. A challenge when designing CRNs for computation is the lack of techniques to verify and validate correctness. In this work, we adapt software testing and repair techniques for use in this domain. In initial work, we designed a testing framework to handle the challenges presented by CRN programs; this includes distributed computation and stochastic behavior. We extended this framework to implement automated program repair of CRN models and automated test generation via program invariants. For future work, we will develop a notion of fault localization for these programs, develop a theory of mutation generation, and address issues regarding flakiness present in this computing paradigm.  more » « less
Award ID(s):
1909688
PAR ID:
10433181
Author(s) / Creator(s):
Date Published:
Journal Name:
37th IEEE/ACM International Conference on Automated Software Engineering (ASE '22) Doctoral Symposium
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lakin, Matthew R.; Šulc, Petr (Ed.)
    Chemical reaction networks (CRNs) are an important tool for molecular programming, a field that is rapidly expanding our ability to deploy computer programs into biological systems for a variety of applications. However, CRNs are also difficult to work with due to their massively parallel nature, leading to the need for higher-level languages that allow for easier computation with CRNs. Recently, research has been conducted into a variety of higher-level languages for deterministic CRNs but modeling CRN parallelism, managing error accumulation, and finding natural CRN representations are ongoing challenges. We introduce Reactamole, a higher-level language for deterministic CRNs that utilizes the functional reactive programming (FRP) paradigm to represent CRNs as a reactive dataflow network. Reactamole equates a CRN with a functional reactive program, implementing the key primitives of the FRP paradigm directly as CRNs. The functional nature of Reactamole makes reasoning about molecular programs easier, and its strong static typing allows us to ensure that a CRN is well-formed by virtue of being well-typed. In this paper, we describe the design of Reactamole and how we use CRNs to represent the common datatypes and operations found in FRP. We also demonstrate the potential of this functional reactive approach to molecular programming by giving an extended example where a CRN is constructed using FRP to modulate and demodulate an amplitude modulated signal. 
    more » « less
  2. Chemical reaction networks (CRNs) are an important tool for molecular programming. This field is rapidly expanding our ability to deploy computer programs into biological systems for various applications. However, CRNs are also difficult to work with due to their massively parallel nature, leading to the need for higher-level languages that allow for more straightforward computation with CRNs. Recently, research has been conducted into various higher-level languages for deterministic CRNs but modeling CRN parallelism, managing error accumulation, and finding natural CRN representations are ongoing challenges. We introduce Reactamole, a higher-level language for deterministic CRNs that utilizes the functional reactive programming (FRP) paradigm to represent CRNs as a reactive dataflow network. Reactamole equates a CRN with a functional reactive program, implementing the key primitives of the FRP paradigm directly as CRNs. The functional nature of Reactamole makes reasoning about molecular programs easier, and its strong static typing allows us to ensure that a CRN is well-formed by virtue of being well-typed. In this paper, we describe the design of Reactamole and how we use CRNs to represent the common datatypes and operations found in FRP. We demonstrate the potential of this functional reactive approach to molecular programming by giving an extended example where a CRN is constructed using FRP to modulate and demodulate an amplitude-modulated signal. We also show how Reactamole can be used to specify abstract CRNs whose structure depends on the reactions and species of its input, allowing users to specify more general CRN behaviors. 
    more » « less
  3. Understanding the algorithmic behaviors that are in principle realizable in a chemical system is necessary for a rigorous understanding of the design principles of biological regulatory networks. Further, advances in synthetic biology herald the time when we will be able to rationally engineer complex chemical systems and when idealized formal models will become blueprints for engineering. Coupled chemical interactions in a well-mixed solution are commonly formalized as chemical reaction networks (CRNs). However, despite the widespread use of CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not well understood. Here, we study the following problem: What functions f : ℝ k → ℝ can be computed by a CRN, in which the CRN eventually produces the correct amount of the “output” molecule, no matter the rate at which reactions proceed? This captures a previously unexplored but very natural class of computations: For example, the reaction X 1 + X 2 → Y can be thought to compute the function y = min ( x 1 , x 2 ). Such a CRN is robust in the sense that it is correct whether its evolution is governed by the standard model of mass-action kinetics, alternatives such as Hill-function or Michaelis-Menten kinetics, or other arbitrary models of chemistry that respect the (fundamentally digital) stoichiometric constraints (what are the reactants and products?). We develop a reachability relation based on a broad notion of “what could happen” if reaction rates can vary arbitrarily over time. Using reachability, we define stable computation analogously to probability 1 computation in distributed computing and connect it with a seemingly stronger notion of rate-independent computation based on convergence in the limit t → ∞ under a wide class of generalized rate laws. Besides the direct mapping of a concentration to a nonnegative analog value, we also consider the “dual-rail representation” that can represent negative values as the difference of two concentrations and allows the composition of CRN modules. We prove that a function is rate-independently computable if and only if it is piecewise linear (with rational coefficients) and continuous (dual-rail representation), or non-negative with discontinuities occurring only when some inputs switch from zero to positive (direct representation). The many contexts where continuous piecewise linear functions are powerful targets for implementation, combined with the systematic construction we develop for computing these functions, demonstrate the potential of rate-independent chemical computation. 
    more » « less
  4. Models of well-mixed chemical reaction networks (CRNs) have provided a solid foundation for the study of programmable molecular systems, but the importance of spatial organization in such systems has increasingly been recognized. In this paper, we explore an alternative chemical computing model introduced by Qian & Winfree in 2014, the surface CRN, which uses molecules attached to a surface such that each molecule only interacts with its immediate neighbours. Expanding on the constructions in that work, we first demonstrate that surface CRNs can emulate asynchronous and synchronous deterministic cellular automata and implement continuously active Boolean logic circuits. We introduce three new techniques for enforcing synchronization within local regions, each with a different trade-off in spatial and chemical complexity. We also demonstrate that surface CRNs can manufacture complex spatial patterns from simple initial conditions and implement interesting swarm robotic behaviours using simple local rules. Throughout all example constructions of surface CRNs, we highlight the trade-off between the ability to precisely place molecules and the ability to precisely control molecular interactions. Finally, we provide a Python simulator for surface CRNs with an easy-to-use web interface, so that readers may follow along with our examples or create their own surface CRN designs. 
    more » « less
  5. Biological regulatory networks depend upon chemical interactions to process information. Engineering such molecular computing systems is a major challenge for synthetic biology and related fields. The chemical reaction network (CRN) model idealizes chemical interactions, abstracting away specifics of the molecular implementation, and allowing rigorous reasoning about the computational power of chemical kinetics. Here we focus on function computation with CRNs, where we think of the initial concentrations of some species as the input and the eventual steady-state concentration of another species as the output. Specifically, we are concerned with CRNs that are rate-independent (the computation must be correct independent of the reaction rate law) and composable (𝑓∘𝑔 can be computed by concatenating the CRNs computing f and g). Rate independence and composability are important engineering desiderata, permitting implementations that violate mass-action kinetics, or even “well-mixedness”, and allowing the systematic construction of complex computation via modular design. We show that to construct composable rate-independent CRNs, it is necessary and sufficient to ensure that the output species of a module is not a reactant in any reaction within the module. We then exactly characterize the functions computable by such CRNs as superadditive, positive-continuous, and piecewise rational linear. Our results show that composability severely limits rate-independent computation unless more sophisticated input/output encodings are used. 
    more » « less