skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The impact of sampling bias on viral phylogeographic reconstruction
Genomic epidemiology plays an ever-increasing role in our understanding of and response to the spread of infectious pathogens. Phylogeography, the reconstruction of the historical location and movement of pathogens from the evolutionary relationships among sampled pathogen sequences, can inform policy decisions related to viral movement among jurisdictions. However, phylogeographic reconstruction is impacted by the fact that the sampling and virus sequencing policies differ among jurisdictions, and these differences can cause bias in phylogeographic reconstructions. Here we assess the potential impacts of geographic-based sampling bias on estimated viral locations in the past, and on whether key viral movements can be detected. We quantify the effect of bias using simulated phylogenies with known geographic histories, and determine the impact of the biased sampling and of the underlying migration rate on the accuracy of estimated past viral locations. We find that overall, the accuracy of phylogeographic reconstruction is high, particularly when the migration rate is low. However, results depend on sampling, and sampling bias can have a large impact on the numbers and nature of estimated migration events. We apply these insights to the geographic spread of Ebolavirus in the 2014-2016 West Africa epidemic. This work highlights how sampling policy can both impact geographic inference and be optimized to best ensure the accuracy of specific features of geographic spread.  more » « less
Award ID(s):
2054347
PAR ID:
10433225
Author(s) / Creator(s):
; ; ;
Editor(s):
Falcão de Oliveira, Everton
Date Published:
Journal Name:
PLOS Global Public Health
Volume:
2
Issue:
9
ISSN:
2767-3375
Page Range / eLocation ID:
e0000577
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Despite the increasing burden of dengue in Kenya and Africa, the introduction and expansion of the virus in the region remain poorly understood. The objective of this study is to examine the genetic diversity and evolutionary histories of dengue virus (DENV) serotypes 1 and 3 in Kenya and contextualize their circulation within circulation dynamics in the broader African region. Viral RNA was extracted from samples collected from a cohort of febrile patients recruited at clinical sites in Kenya from 2013 to 2022. Samples were tested by polymerase chain reaction (PCR) for DENV presence. Five DENV-positive samples were serotyped, and complete viral genomes for phylogenetic inference were obtained via sequencing on Illumina platforms. Sequences generated in our study were combined with global datasets of sequences, and Bayesian and maximum likelihood methods were used to infer phylogenetic trees and geographic patterns of spread with a focus on Kenya and Africa as a whole. Four new DENV-1 and one new DENV-3 genomes were successfully sequenced and combined with 328 DENV-1 and 395 DENV-3 genomes from elsewhere for phylogenetic analyses. The DENV-1 sequences from our study formed a monophyletic cluster with an inferred common ancestor in 2019 (most recent common ancestor 2019 and 95% high posterior density 2018–19), which was closely related to sequences from Tanzania. The single DENV-3 sequence clustered with sequences from Tanzania and Kenya, was collected between 2017 and 2019 and was related to recent outbreaks in the region. Phylogenetic trees resolved multiple clades of DENV-1 and DENV-3 concurrently circulating in Africa, introduced in the early-to mid-2000s. Three DENV-1 and four DENV-3 clades are highlighted, introduced between 2000 and 2015. Phylogeographic models suggest frequent, independent importations of DENV lineages into Kenya and Africa from East and South-East Asia via distinct geographic pathways. DENV-1 and DENV-3 evolutionary dynamics in Africa are characterized by the cocirculation of multiple recently introduced lineages. Circulating lineages are introduced via distinct geographic pathways that may be centered around regional nexus locations. Increased surveillance is required to identify key regional locations that drive spread, and dengue interventions should focus on interrupting spread at these locations. 
    more » « less
  2. The Mongolian racerunner, Eremias argus, is a small lizard endemic to Northeast Asia that can serve as an excellent model for investigating how geography and past climate change have jointly influenced the evolution of biodiversity in this region. To elucidate the processes underlying its diversification and demography, we reconstructed the range-wide phylogeographic pattern and evolutionary trajectory, using phylogenetic, population genetic, landscape genetic, Bayesian phylogeographic reconstruction and ecological niche modeling approaches. Phylogenetic analyses of the mtDNA cyt b gene revealed eight lineages that were unbounded by geographic region. The genetic structure of E. argus was mainly determined by geographic distance. Divergence dating indicated that E. argus and E. brenchleyi diverged during the Mid-Pliocene Warm Period. E. argus was estimated to have coalesced at~0.4351 Ma (Marine Isotope Stage 19). Bayesian phylogeographic diffusion analysis revealed out-of-Inner Mongolia and rapid colonization events from the end of the Last Interglacial to the Last Glacial Maximum, which is consistent with the expanded suitable range of the Last Glacial Maximum. Pre-Last Glacial Maximum growth of population is presented for most lineages of E. argus. The Glacial Maximum contraction model and the previous multiple glacial refugia hypotheses are rejected. This may be due to an increase in the amount of climatically favorable habitats in Northeast Asia. Furthermore, E. argus barbouri most likely represents an invalid taxon. The present study is the first to report a range-wide phylogeography of reptiles over such a large region in Northeast Asia. Our results make a significant contribution towards understanding the biogeography of the entire Northeast Asia. 
    more » « less
  3. Abstract Susceptibility to infectious diseases such as COVID-19 depends on how those diseases spread. Many studies have examined the decrease in COVID-19 spread due to reduction in travel. However, less is known about how much functional geographic regions, which capture natural movements and social interactions, limit the spread of COVID-19. To determine boundaries between functional regions, we apply community-detection algorithms to large networks of mobility and social-media connections to construct geographic regions that reflect natural human movement and relationships at the county level in the coterminous United States. We measure COVID-19 case counts, case rates, and case-rate variations across adjacent counties and examine how often COVID-19 crosses the boundaries of these functional regions. We find that regions that we construct using GPS-trace networks and especially commute networks have the lowest COVID-19 case rates along the boundaries, so these regions may reflect natural partitions in COVID-19 transmission. Conversely, regions that we construct from geolocated Facebook friendships and Twitter connections yield less effective partitions. Our analysis reveals that regions that are derived from movement flows are more appropriate geographic units than states for making policy decisions about opening areas for activity, assessing vulnerability of populations, and allocating resources. Our insights are also relevant for policy decisions and public messaging in future emergency situations. 
    more » « less
  4. This paper presents an integrated computational framework combining a Molecular Dynamics (MD) based social force pedestrian movement model and a stochastic infection dynamics model to evaluate the spread of viral infectious diseases during air-transportation. We apply the multiscale model for three infectious (1) Ebola (2) Influenza (H1N1 strain) and (3) SARS pathogens with different transmission mechanisms and compare the pattern of propagation during an Airbus A320 carrier boarding and deplaning at an airport gate. The objective of this analysis is to assess the influence of pedestrian movement on infection spread during air travel. 
    more » « less
  5. This paper presents an integrated computational framework combining a molecular Dynamics (MD) based social force pedestrian movement model and a stochastic infection dynamics model to evaluate the spread of viral infectious diseases during air-transportation. We apply the multiscale model for three infectious (1) Ebola (2) Influenza (H1N1 strain) and (3) SARS pathogens with different transmission mechanisms and compare the pattern of propagation during an Airbus A320 carrier boarding and deplaning at an airport gate. The objective of this analysis is to assess the influence of pedestrian movement on infection spread during air travel 
    more » « less