skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2054347

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Individual-level interactions shape societal or economic processes, such as infectious diseases spreading, stock prices fluctuating and public opinion shifting. Understanding how the interaction of different individuals affects collective outcomes is more important than ever, as the internet and social media develop. Social networks representing individuals' influence relations play a key role in understanding the connections between individual-level interactions and societal or economic outcomes. Recent research has revealed how the topology of a social network affects collective decision-making in a community. Furthermore, the traits of individuals that determine how they process received information for making decisions also change a community's collective decisions. In this work, we develop stochastic processes to generate networks of individuals with two simple traits: Being a conformist and being an anticonformist. We introduce a novel deterministic voter model for a trait-attributed network, where the individuals make binary choices following simple deterministic rules based on their traits. We show that the simple deterministic rules can drive unpredictable fluctuations of collective decisions which eventually become periodic. We study the effects of network topology and trait distribution on the first passage time for a sequence of collective decisions showing periodicity. 
    more » « less
  2. Falcão de Oliveira, Everton (Ed.)
    Genomic epidemiology plays an ever-increasing role in our understanding of and response to the spread of infectious pathogens. Phylogeography, the reconstruction of the historical location and movement of pathogens from the evolutionary relationships among sampled pathogen sequences, can inform policy decisions related to viral movement among jurisdictions. However, phylogeographic reconstruction is impacted by the fact that the sampling and virus sequencing policies differ among jurisdictions, and these differences can cause bias in phylogeographic reconstructions. Here we assess the potential impacts of geographic-based sampling bias on estimated viral locations in the past, and on whether key viral movements can be detected. We quantify the effect of bias using simulated phylogenies with known geographic histories, and determine the impact of the biased sampling and of the underlying migration rate on the accuracy of estimated past viral locations. We find that overall, the accuracy of phylogeographic reconstruction is high, particularly when the migration rate is low. However, results depend on sampling, and sampling bias can have a large impact on the numbers and nature of estimated migration events. We apply these insights to the geographic spread of Ebolavirus in the 2014-2016 West Africa epidemic. This work highlights how sampling policy can both impact geographic inference and be optimized to best ensure the accuracy of specific features of geographic spread. 
    more » « less
  3. We introduce a graph polynomial that distinguishes tree structures to represent dependency grammar and a measure based on the polynomial representation to quantify syntax similarity. The polynomial encodes accurate and comprehensive information about the dependency structure and dependency relations of words in a sentence, which enables in-depth analysis of dependency trees with data analysis tools. We apply the polynomial-based methods to analyze sentences in the ParallelUniversal Dependencies treebanks. Specifically, we compare the syntax of sentences and their translations in different languages, and we perform a syntactic typology study of available languages in the Parallel Universal Dependencies treebanks. We also demonstrate and discuss the potential of the methods in measuring syntax diversity of corpora. 
    more » « less