Abstract Gaussian accelerated molecular dynamics (GaMD) is a robust computational method for simultaneous unconstrained enhanced sampling and free energy calculations of biomolecules. It works by adding a harmonic boost potential to smooth biomolecular potential energy surface and reduce energy barriers. GaMD greatly accelerates biomolecular simulations by orders of magnitude. Without the need to set predefined reaction coordinates or collective variables, GaMD provides unconstrained enhanced sampling and is advantageous for simulating complex biological processes. The GaMD boost potential exhibits a Gaussian distribution, thereby allowing for energetic reweighting via cumulant expansion to the second order (i.e., “Gaussian approximation”). This leads to accurate reconstruction of free energy landscapes of biomolecules. Hybrid schemes with other enhanced sampling methods, such as the replica‐exchange GaMD (rex‐GaMD) and replica‐exchange umbrella sampling GaMD (GaREUS), have also been introduced, further improving sampling and free energy calculations. Recently, new “selective GaMD” algorithms including the Ligand GaMD (LiGaMD) and Peptide GaMD (Pep‐GaMD) enabled microsecond simulations to capture repetitive dissociation and binding of small‐molecule ligands and highly flexible peptides. The simulations then allowed highly efficient quantitative characterization of the ligand/peptide binding thermodynamics and kinetics. Taken together, GaMD and its innovative variants are applicable to simulate a wide variety of biomolecular dynamics, including protein folding, conformational changes and allostery, ligand binding, peptide binding, protein–protein/nucleic acid/carbohydrate interactions, and carbohydrate/nucleic acid interactions. In this review, we present principles of the GaMD algorithms and recent applications in biomolecular simulations and drug design. This article is categorized under:Structure and Mechanism > Computational Biochemistry and BiophysicsMolecular and Statistical Mechanics > Molecular Dynamics and Monte‐Carlo MethodsMolecular and Statistical Mechanics > Free Energy Methods
more »
« less
An interoperable implementation of collective‐variable based enhanced sampling methods in extended phase space within the OpenMM package
Abstract Collective variable (CV)‐based enhanced sampling techniques are widely used today for accelerating barrier‐crossing events in molecular simulations. A class of these methods, which includes temperature accelerated molecular dynamics (TAMD)/driven‐adiabatic free energy dynamics (d‐AFED), unified free energy dynamics (UFED), and temperature accelerated sliced sampling (TASS), uses an extended variable formalism to achieve quick exploration of conformational space. These techniques are powerful, as they enhance the sampling of a large number of CVs simultaneously compared to other techniques. Extended variables are kept at a much higher temperature than the physical temperature by ensuring adiabatic separation between the extended and physical subsystems and employing rigorous thermostatting. In this work, we present a computational platform to perform extended phase space enhanced sampling simulations using the open‐source molecular dynamics engine OpenMM. The implementation allows users to have interoperability of sampling techniques, as well as employ state‐of‐the‐art thermostats and multiple time‐stepping. This work also presents protocols for determining the critical parameters and procedures for reconstructing high‐dimensional free energy surfaces. As a demonstration, we present simulation results on the high dimensional conformational landscapes of the alanine tripeptide in vacuo, tetra‐N‐methylglycine (tetra‐sarcosine) peptoid in implicit solvent, and the Trp‐cage mini protein in explicit water.
more »
« less
- Award ID(s):
- 1955381
- PAR ID:
- 10433268
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Computational Chemistry
- Volume:
- 44
- Issue:
- 28
- ISSN:
- 0192-8651
- Page Range / eLocation ID:
- p. 2166-2183
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Shea, Joan-Emma (Ed.)We aim to automatize the identification of collective variables to simplify and speed up enhanced sampling simulations of conformational dynamics in biomolecules. We focus on anharmonic low-frequency vibrations that exhibit fluctuations on timescales faster than conformational transitions but describe a path of least resistance towards structural change. A key challenge is that harmonic approximations are ill-suited to characterize these vibrations, which are observed at far-infrared frequencies and are easily excited by thermal collisions at room temperature. Here, we approached this problem with a frequency-selective anharmonic (FRESEAN) mode analysis that does not rely on harmonic approximations and successfully isolates anharmonic low-frequency vibrations from short molecular dynamics simulation trajectories. We applied FRESEAN mode analysis to simulations of alanine dipeptide, a common test system for enhanced sampling simulation protocols, and compare the performance of isolated low-frequency vibrations to conventional user-defined collective variables (here backbone dihedral angles) in enhanced sampling simulations. The comparison shows that enhanced sampling along anharmonic low-frequency vibrations not only reproduces known conformational dynamics but can even further improve sampling of slow transitions compared to user-defined collective variables. Notably, free energy surfaces spanned by low-frequency anharmonic vibrational modes exhibit lower barriers associated with conformational transitions relative to representations in backbone dihedral space. We thus conclude that anharmonic low-frequency vibrations provide a promising path for highly effective and fully automated enhanced sampling simulations of conformational dynamics in biomolecules.more » « less
-
Molecular dynamics (MD) simulations are fundamental computational tools for the study of proteins and their free energy landscapes. However, sampling protein conformational changes through MD simulations is challenging due to the relatively long time scales of these processes. Many enhanced sampling approaches have emerged to tackle this problem, including biased sampling and path-sampling methods. In this Perspective, we focus on adaptive sampling algorithms. These techniques differ from other approaches because the thermodynamic ensemble is preserved and the sampling is enhanced solely by restarting MD trajectories at particularly chosen seeds rather than introducing biasing forces. We begin our treatment with an overview of theoretically transparent methods, where we discuss principles and guidelines for adaptive sampling. Then, we present a brief summary of select methods that have been applied to realistic systems in the past. Finally, we discuss recent advances in adaptive sampling methodology powered by deep learning techniques, as well as their shortcomings.more » « less
-
We present a consensus-based framework that unifies phase space exploration with posterior-residual-based adaptive sampling for surrogate construction in high-dimensional energy landscapes. Unlike standard approximation tasks where sampling points can be freely queried, systems with complex energy landscapes such as molecular dynamics (MD) do not have direct access to arbitrary sampling regions due to the physical constraints and energy barriers; the surrogate construction further relies on the dynamical exploration of phase space, posing a significant numerical challenge. We formulate the problem as a minimax optimization that jointly adapts both the surrogate approximation and residual-enhanced sampling. The construction of free energy surfaces (FESs) for high-dimensional collective variables (CVs) of MD systems is used as a motivating example to illustrate the essential idea. Specifically, the maximization step establishes a stochastic interacting particle system to impose adaptive sampling through both exploitation of a Laplace approximation of the max-residual region and exploration of uncharted phase space via temperature control. The minimization step updates the FES surrogate with the new sample set. Numerical results demonstrate the effectiveness of the present approach for biomolecular systems with up to 30 CVs. While we focus on the FES construction, the developed framework is general for efficient surrogate construction for complex systems with high-dimensional energy landscapes.more » « less
-
Molecular dynamics (MD) is the method of choice for understanding the structure, function, and interactions of molecules. However, MD simulations are limited by the strong metastability of many molecules, which traps them in a single conformation basin for an extended amount of time. Enhanced sampling techniques, such as metadynamics and replica exchange, have been developed to overcome this limitation and accelerate the exploration of complex free energy landscapes. In this paper, we propose Vendi Sampling, a replica-based algorithm for increasing the efficiency and efficacy of the exploration of molecular conformation spaces. In Vendi sampling, replicas are simulated in parallel and coupled via a global statistical measure, the Vendi Score, to enhance diversity. Vendi sampling allows for the recovery of unbiased sampling statistics and dramatically improves sampling efficiency. We demonstrate the effectiveness of Vendi sampling in improving molecular dynamics simulations by showing significant improvements in coverage and mixing between metastable states and convergence of free energy estimates for four common benchmarks, including Alanine Dipeptide and Chignolin.more » « less
An official website of the United States government
