skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Topography and canopy cover influence soil organic carbon composition and distribution across a forested hillslope in the discontinuous permafrost zone
Abstract Topography and canopy cover influence ground temperature in warming permafrost landscapes, yet soil temperature heterogeneity introduced by mesotopographic slope positions, microtopographic differences in vegetation cover, and the subsequent impact of contrasting temperature conditions on soil organic carbon (SOC) dynamics are understudied. Buffering of permafrost‐affected soils against warming air temperatures in boreal forests can reflect surface soil characteristics (e.g., thickness of organic material) as well as the degree and type of canopy cover (e.g., open cover vs. closed cover). Both landscape and soil properties interact to determine meso‐ and microscale heterogeneity of ground warming. We sampled a hillslope catena transect in a discontinuous permafrost zone near Fairbanks, Alaska, to test the small‐scale (1 to 3 m) impacts of slope position and cover type on soil organic matter composition. Mineral active layer samples were collected from backslope, low backslope, and footslope positions at depths spanning 19 to 60 cm. We examined soil mineralogical composition, soil moisture, total carbon and nitrogen content, and organic mat thickness in conjunction with an assessment of SOC composition using Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR‐MS). Soils in the footslope position had a higher relative contribution of lignin‐like compounds, whereas backslope soils had more aliphatic and condensed aromatic compounds as determined using FT‐ICR‐MS. The effect of open versus closed tree canopy cover varied with the slope position. On the backslope, we found higher oxidation of molecules under open cover than closed cover, indicating an effect of warmer soil temperature on decomposition. Little to no effect of the canopy was observed in soils at the footslope position, which we attributed, in part, to the strong impact of soil moisture content in SOC dynamics in the water‐gathering footslope position. The thin organic mat under open cover on the backslope position may have contributed to differences in soil temperature and thus SOC oxidation under open and closed canopies. Here, the thinner organic mat did not appear to buffer the underlying soil against warm season air temperatures and thus increased SOC decomposition as indicated by the higher oxidation of SOC molecules and a lower contribution of simple molecules under open cover than the closed canopy sites. Our findings suggest that the role of canopy cover in SOC dynamics varies as a function of landscape position and soil properties, namely, organic mat thickness and soil moisture. Condition‐specific heterogeneity of SOC composition under open and closed canopy cover highlights the protective effect of canopy cover for soils on backslope positions.  more » « less
Award ID(s):
2138937
PAR ID:
10433290
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Permafrost and Periglacial Processes
Volume:
34
Issue:
3
ISSN:
1045-6740
Page Range / eLocation ID:
p. 331-358
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that 1014 − 175 + 194 Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate. 
    more » « less
  2. Abstract Fire frequency is increasing with climate warming in the boreal regions of interior Alaska, with short fire return intervals (< 50 years) becoming more common. Recent studies suggest these “reburns” will reduce the insulating surface organic layer (SOL) and seedbanks, inhibiting black spruce regeneration and increasing deciduous cover. These changes are projected to amplify soil warming, increasing mineral soil organic carbon (SOC) decomposition rates, and impair re-establishment of understorey vegetation and the SOL. We examined how reburns changed soil temperature, heterotrophic soil respiration (RH), and understorey gross primary production (GPP), and related these to shifts in vegetation composition and SOL depths. Two distinct burn complexes previously covered by spruce were measured; both included areas burned 1x, 2x, and 3x over 60 years and mature (≈ 90 year old) spruce forests underlain by permafrost. A 2.7 °C increase in annual near-surface soil temperatures from 1x to 3x burns was correlated with a decrease in SOL depths and a 1.9 Mg C ha−1increase in annual RH efflux. However, near-surface soil warming accounted for ≤ 23% of higher RH efflux; increases in deciduous overstorey vegetation and root biomass with reburning better correlated with RH than soil temperature. Reburning also warmed deeper soils and reduced the biomass and GPP of understory plants, lessening their potential to offset elevated RH and contribute to SOL development. This suggests that reburning led to losses of mineral SOC previously stored in permafrost due to warming soils and changes in vegetation composition, illustrating how burn frequency creates pathways for accelerated regional C loss. 
    more » « less
  3. Conifer forests historically have been resilient to wildfires in part due to thick organic soil layers that regulate combustion and post-fire moisture and vegetation change. However, recent shifts in fire activity in western North America may be overwhelming these resilience mechanisms with potential impacts for energy and carbon exchange. Here, we quantify the long-term recovery of the organic soil layer and its carbon pools across 511 forested plots. Our plots span ~ 140,000 km2 across two ecozones of the Northwest Territories, Canada, and allowed us to investigate the impacts of time-after-fire, site moisture class, and dominant canopy type on soil organic layer thickness and associated carbon stocks. Despite thinner soil organic layers in xeric plots immediately after fire, these drier stands supported faster post-fire recovery of the soil organic layer than in mesic plots. Unlike xeric or mesic stands, post-fire soil carbon accumulation rates in hydric plots were negligible despite wetter forested plots having greater soil organic carbon stocks immediately post-fire compared to other stands. While permafrost and high-water tables inhibit combustion and maintain thick organic soils immediately after fire, our results suggest that these wet stands are not recovering their pre-fire carbon stocks on a century timescale. We show that canopy conversion from black spruce to jack pine or deciduous dominance could reduce organic soil carbon stocks by 60–80% depending on stand age. Our two main findings—decreasing organic soil carbon storage with increasing deciduous cover and the lack of post-fire SOL recovery in hydric sites—have implications for the turnover time of carbon stocks in the western boreal forest region and also will impact energy fluxes by controlling albedo and surface soil moisture. 
    more » « less
  4. Clarifying the mechanisms that control variability in the spatial distribution of soil organic carbon (SOC) is key to accurate estimates of soil C fluxes. Mobile organic C (MOC), here defined as the fraction of SOC that is not strongly bound to mineral surfaces but that can be transported hydrologically as dissolved or particulate organic C, represents the portion of SOC whose residence time can be modulated via movement down profiles and across landscapes. The relationship between the spatial arrangement and turnover time of SOC is especially evident in the widely observed correlation between soil depth and mean residence time; deeper SOC tends to persist for relatively long periods in the profile.  Moisture can promote microbial mineralization of SOC to CO2, but water also can transport MOC throughout profiles and landscapes. Controls on the movement of MOC have not been fully elucidated however, and the relationship between MOC and the spatial arrangement of SOC has not been thoroughly explored. Using data collected from five distinct ecosystem types across North America we evaluate the hypothesis that moisture dynamics throughout the soil profile as driven by seasonality, vegetation productivity, and topographical position influence the spatial distribution of MOC, and thus the observed heterogeneity of SOC and its persistence. We demonstrate that, in soils with surplus water availability and structural features that permit sufficient flow, transport drives the accumulation of disproportionately large concentrations of MOC deep in the profile and in downslope topographical positions. Our results further demonstrate that the vertical and lateral transport of MOC is also regulated by variation between energy- and water-limited systems in the amount of seasonally-available water moving through the profile: at times and in places where relatively more surplus water is available, MOC is more readily translocated. Excursions from these patterns of transport and accumulation result from soil textural and structural characteristics that immobilize organic C or inhibit flow. These findings reveal the nuances of how soil moisture dynamics regulate vertical and lateral distributions of MOC, thereby promoting the development of heterogeneous SOC stores as well as deep, relatively persistent SOC pools. 
    more » « less
  5. Abstract Identifying controls on soil organic carbon (SOC) storage, and where SOC is most vulnerable to loss, are essential to managing soils for both climate change mitigation and global food security. However, we currently lack a comprehensive understanding of the global drivers of SOC storage, especially with regards to particulate (POC) and mineral‐associated organic carbon (MAOC). To better understand hierarchical controls on POC and MAOC, we applied path analyses to SOC fractions, climate (i.e., mean annual temperature [MAT] and mean annual precipitation minus potential evapotranspiration [MAP‐PET]), carbon (C) input (i.e., net primary production [NPP]), and soil property data synthesized from 72 published studies, along with data we generated from the National Ecological Observatory Network soil pits (n = 901 total observations). To assess the utility of investigating POC and MAOC separately in understanding SOC storage controls, we then compared these results with another path analysis predicting bulk SOC storage. We found that POC storage is negatively related to MAT and soil pH, while MAOC storage is positively related to NPP and MAP‐PET, but negatively related to soil % sand. Our path analysis predicting bulk SOC revealed similar trends but explained less variation in C storage than our POC and MAOC analyses. Given that temperature and pH impose constraints on microbial decomposition, this indicates that POC is primarily controlled by SOC loss processes. In contrast, strong relationships with variables related to plant productivity constraints, moisture, and mineral surface availability for sorption indicate that MAOC is primarily controlled by climate‐driven variations in C inputs to the soil, as well as C stabilization mechanisms. Altogether, these results demonstrate that global POC and MAOC storage are controlled by separate environmental variables, further justifying the need to quantify and model these C fractions separately to assess and forecast the responses of SOC storage to global change. 
    more » « less