skip to main content


Title: Self-supervised Cloth Reconstruction via Action-conditioned Cloth Tracking
Award ID(s):
1849154 2046491
NSF-PAR ID:
10433356
Author(s) / Creator(s):
Date Published:
Journal Name:
arXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Supercapacitors have attracted enormous attention for energy storage in both academic and industrial sectors in the past years. In this study, all‐solid‐state flexible asymmetric supercapacitors (ASCs) without any binder, incorporated with the hydrophilic carbon cloth (HCC) with MnO2nanocomposite (HCC@MnO2) as the positive electrode, the HCC with polypyrrole (PPy) (HCC@PPy) as the negative electrode, and polyvinyl alcohol (PVA)–LiCl gel as both gel electrolyte and separator, are reported. The HCC@MnO2and HCC@PPy electrodes are prepared by direct deposition of either MnO2nanoparticles or PPy nanofilms on the HCC through a simple, facile, and controllable electrochemical deposition method, respectively. The HCC@MnO2and HCC@PPy electrodes provide rich contact area for gel electrolyte, facilitating the rapid delivery of electrolyte ions, and also minimize the resistance of ASCs. As a result, all‐solid‐state flexible binder‐free HCC@MnO2//HCC@PPy ASCs exhibit a large operating voltage of 1.8 V, high energy density of 28.2 Wh kg−1at the power density of 420.5 W kg−1, and excellent cycling stability (91.2% capacitance retention after 5000 cycles). The present study provides a facile, scalable, and efficient approach to fabricate all‐solid‐state ASCs with high electrochemical storage performance for flexible electronics.

     
    more » « less