Introduction The effect of testosterone (T) therapy on the vaginal microbiota of transgender men (TGM) is not well characterised, although one cross-sectional study comparing the vaginal microbiota of cisgender women to TGM on T≥1 year found that, in 71% of the TGM, the vaginal microbiota was less likely to be Lactobacillus -dominated and more likely to be enriched with >30 other bacterial species, many associated with bacterial vaginosis (BV). This prospective study aims to investigate changes in the composition of the vaginal microbiota over time in TGM who retain their natal genitalia (ie, vagina) and initiate T. In addition, we will identify changes in the vaginal microbiota preceding incident BV (iBV) in this cohort while investigating behavioural factors, along with hormonal shifts, which may be associated with iBV. Methods and analysis T-naïve TGM who have not undergone gender-affirming genital surgery with normal baseline vaginal microbiota (ie, no Amsel criteria, normal Nugent Score with no Gardnerella vaginalis morphotypes) will self-collect daily vaginal specimens for 7 days prior to initiating T and for 90 days thereafter. These specimens will be used for vaginal Gram stain, 16S rRNA gene sequencing and shotgun metagenomic sequencing to characterise shifts in the vaginal microbiota over time, including development of iBV. Participants will complete daily diaries on douching, menses and behavioural factors including sexual activity during the study. Ethics and dissemination This protocol is approved through the single Institutional Review Board mechanism by the University of Alabama at Birmingham. External relying sites are the Louisiana State University Health Sciences Center, New Orleans Human Research Protection Program and the Indiana University Human Research Protection Program. Study findings will be presented at scientific conferences and peer-reviewed journals as well as shared with community advisory boards at participating gender health clinics and community-based organisations servicing transgender people. Registration details Protocol # IRB-300008073.
more »
« less
Characterization of Vaginal Microbial Community Dynamics in the Pathogenesis of Incident Bacterial Vaginosis, a Pilot Study
Background Despite more than 60 years of research, the etiology of bacterial vaginosis (BV) remains controversial. In this pilot study, we used shotgun metagenomic sequencing to characterize vaginal microbial community changes before the development of incident BV (iBV). Methods A cohort of African American women with a baseline healthy vaginal microbiome (no Amsel criteria, Nugent score 0–3 with no Gardnerella vaginalis morphotypes) were followed for 90 days with daily self-collected vaginal specimens for iBV (≥2 consecutive days of a Nugent score of 7–10). Shotgun metagenomic sequencing was performed on select vaginal specimens from 4 women, every other day for 12 days before iBV diagnosis. Sequencing data were analyzed through Kraken2 and bioBakery 3 workflows, and specimens were classified into community state types. Quantitative polymerase chain reaction was performed to compare the correlation of read counts with bacterial abundance. Results Common BV-associated bacteria such as G. vaginalis , Prevotella bivia , and Fannyhessea vaginae were increasingly identified in the participants before iBV. Linear modeling indicated significant increases in G. vaginalis and F . vaginae relative abundance before iBV, whereas the relative abundance of Lactobacillus species declined over time. The Lactobacillus species decline correlated with the presence of Lactobacillus phages. We observed enrichment in bacterial adhesion factor genes on days before iBV. There were also significant correlations between bacterial read counts and abundances measured by quantitative polymerase chain reaction. Conclusions This pilot study characterizes vaginal community dynamics before iBV and identifies key bacterial taxa and mechanisms potentially involved in the pathogenesis of iBV.
more »
« less
- Award ID(s):
- 2018936
- PAR ID:
- 10433456
- Date Published:
- Journal Name:
- Sexually Transmitted Diseases
- Volume:
- 50
- Issue:
- 8
- ISSN:
- 0148-5717
- Page Range / eLocation ID:
- 523 to 530
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Bacterial vaginosis (BV) is the most prevalent vaginal condition among reproductive-age women presenting with vaginal complaints. Despite its significant impact on women’s health, limited knowledge exists regarding the microbial community composition and metabolic interactions associated with BV. In this study, we analyze metagenomic data obtained from human vaginal swabs to generate in silico predictions of BV-associated bacterial metabolic interactions via genome-scale metabolic network reconstructions (GENREs). While most efforts to characterize symptomatic BV (and thus guide therapeutic intervention by identifying responders and non-responders to treatment) are based on genomic profiling, our in silico simulations reveal functional metabolic relatedness between species as quite distinct from genetic relatedness. We grow several of the most common co-occurring bacteria (Prevotella amnii, Prevotella buccalis, Hoylesella timonensis, Lactobacillus iners, Fannyhessea vaginae, andAerrococcus christenssii) on the spent media ofGardnerellaspecies and perform metabolomics to identify potential mechanisms of metabolic interaction. Through these analyses, we identify BV-associated bacteria that produce caffeate, a compound implicated in estrogen receptor binding, when grown in the spent media of other BV-associated bacteria. These findings underscore the complex and diverse nature of BV-associated bacterial community structures and several of these mechanisms are of potential significance in understanding host-microbiome relationships.more » « less
-
Using sequence reads from shotgun metagenomic analyses in both cattle and sheep, we describe how failures in mate pairing on Illumina sequencing can interact with bioinformatics pipelines to give spurious patterns among rare components of a metagenomic sample. We identified several different shotgun metagenomic datasets from different animals and different laboratories where the two members of the read pair matched a viral database at very different frequencies. We traced this bias to a set of poly-G reads of high quality that resulted from failures in generating read pairs during library preparation. These results reinforce the need to remove poly-G-rich reads when quality filtering shotgun metagenomic data.more » « less
-
Rao, Krishna (Ed.)ABSTRACT Gardnerella is a frequent member of the urogenital microbiota. Given the association between Gardnerella vaginalis and bacterial vaginosis (BV), significant efforts have been focused on characterizing this species in the vaginal microbiota. However, Gardnerella also is a frequent member of the urinary microbiota. In an effort to characterize the bacterial species of the urinary microbiota, we present here 10 genomes of urinary Gardnerella isolates from women with and without lower urinary tract symptoms. These genomes complement those of 22 urinary Gardnerella strains previously isolated and sequenced by our team. We included these genomes in a comparative genome analysis of all publicly available Gardnerella genomes, which include 33 urinary isolates, 78 vaginal isolates, and 2 other isolates. While once this genus was thought to consist of a single species, recent comparative genome analyses have revealed 3 new species and an additional 9 groups within Gardnerella . Based upon our analysis, we suggest a new group for the species. We also find that distinction between these Gardnerella species/groups is possible only when considering the core or whole-genome sequence, as neither the sialidase nor vaginolysin genes are sufficient for distinguishing between species/groups despite their clinical importance. In contrast to the vaginal microbiota, we found that only five Gardnerella species/groups have been detected within the lower urinary tract. Although we found no association between a particular Gardnerella species/group(s) and urinary symptoms, further sequencing of urinary Gardnerella isolates is needed for both comprehensive taxonomic characterization and etiological classification of Gardnerella in the urinary tract. IMPORTANCE Prior research into the bacterium Gardnerella vaginalis has largely focused on its association with bacterial vaginosis (BV). However, G. vaginalis is also frequently found within the urinary microbiota of women with and without lower urinary tract symptoms as well as individuals with chronic kidney disease, interstitial cystitis, and BV. This prompted our investigation into Gardnerella from the urinary microbiota and all publicly available Gardnerella genomes from the urogenital tract. Our work suggests that while some Gardnerella species can survive in both the urinary tract and vagina, others likely cannot. This study provides the foundation for future studies of Gardnerella within the urinary tract and its possible contribution to lower urinary tract symptoms.more » « less
-
Kalendar, Ruslan (Ed.)The use of museum specimens for research in microbial evolutionary ecology remains an under-utilized investigative dimension with important potential. Despite this potential, there remain barriers in methodology and analysis to the wide-spread adoption of museum specimens for such studies. Here, we hypothesized that there would be significant differences in taxonomic prediction and related diversity among sample type (museum or fresh) and sequencing strategy (medium-depth shotgun metagenomic or 16S rRNA gene). We found dramatically higher predicted diversity from shotgun metagenomics when compared to 16S rRNA gene sequencing in museum and fresh samples, with this differential being larger in museum specimens. Broadly confirming these hypotheses, the highest diversity found in fresh samples was with shotgun sequencing using the Rep200 reference inclusive of viruses and microeukaryotes, followed by the WoL reference database. In museum-specimens, community diversity metrics also differed significantly between sequencing strategies, with the alpha-diversity ACE differential being significantly greater than the same comparisons made for fresh specimens. Beta diversity results were more variable, with significance dependent on reference databases used. Taken together, these findings demonstrate important differences in diversity results and prompt important considerations for future experiments and downstream analyses aiming to incorporate microbiome datasets from museum specimens.more » « less
An official website of the United States government

