skip to main content


Title: Genome Investigation of Urinary Gardnerella Strains and Their Relationship to Isolates of the Vaginal Microbiota
ABSTRACT Gardnerella is a frequent member of the urogenital microbiota. Given the association between Gardnerella vaginalis and bacterial vaginosis (BV), significant efforts have been focused on characterizing this species in the vaginal microbiota. However, Gardnerella also is a frequent member of the urinary microbiota. In an effort to characterize the bacterial species of the urinary microbiota, we present here 10 genomes of urinary Gardnerella isolates from women with and without lower urinary tract symptoms. These genomes complement those of 22 urinary Gardnerella strains previously isolated and sequenced by our team. We included these genomes in a comparative genome analysis of all publicly available Gardnerella genomes, which include 33 urinary isolates, 78 vaginal isolates, and 2 other isolates. While once this genus was thought to consist of a single species, recent comparative genome analyses have revealed 3 new species and an additional 9 groups within Gardnerella . Based upon our analysis, we suggest a new group for the species. We also find that distinction between these Gardnerella species/groups is possible only when considering the core or whole-genome sequence, as neither the sialidase nor vaginolysin genes are sufficient for distinguishing between species/groups despite their clinical importance. In contrast to the vaginal microbiota, we found that only five Gardnerella species/groups have been detected within the lower urinary tract. Although we found no association between a particular Gardnerella species/group(s) and urinary symptoms, further sequencing of urinary Gardnerella isolates is needed for both comprehensive taxonomic characterization and etiological classification of Gardnerella in the urinary tract. IMPORTANCE Prior research into the bacterium Gardnerella vaginalis has largely focused on its association with bacterial vaginosis (BV). However, G. vaginalis is also frequently found within the urinary microbiota of women with and without lower urinary tract symptoms as well as individuals with chronic kidney disease, interstitial cystitis, and BV. This prompted our investigation into Gardnerella from the urinary microbiota and all publicly available Gardnerella genomes from the urogenital tract. Our work suggests that while some Gardnerella species can survive in both the urinary tract and vagina, others likely cannot. This study provides the foundation for future studies of Gardnerella within the urinary tract and its possible contribution to lower urinary tract symptoms.  more » « less
Award ID(s):
1661357
NSF-PAR ID:
10284129
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Rao, Krishna
Date Published:
Journal Name:
mSphere
Volume:
6
Issue:
3
ISSN:
2379-5042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Corynebacterium phoceense is a Gram-positive species previously isolated from human urine. Although other species from the same genus have been associated with urinary tract infections, C. phoceense is currently believed to be a non-pathogenic member of the urogenital microbiota. Prior to our study, only two isolates were described in the literature, and very little is known about the species. Here, we describe C. phoceense UFMG-H7, the first strain of this species isolated from the urine of healthy cattle. The genome for this isolate was produced and compared to the two other publicly available C. phoceense as well as other Corynebacterium genome assemblies. Our in-depth genomic analysis identified four additional publicly available genome assemblies that are representatives of the species, also isolated from the human urogenital tract. Although none of the strains have been associated with symptoms or disease, numerous genes associated with virulence factors are encoded. In contrast to related Corynebacterium species and Corynebacterium species from the bovine vaginal tract, all C. phoceense strains examined code for the SpaD-type pili suggesting adherence is essential for its persistence within the urinary tract. As the other C. phoceense strains analysed were isolated from the human urogenital tract, our results suggest that this species may be specific to this niche. 
    more » « less
  2. The genus Rosenbergiella is one of the most frequent bacterial inhabitants of flowers and a usual member of the insect microbiota worldwide. To date, there is only one publicly available Rosenbergiella genome, corresponding to the type strain of Rosenbergiella nectarea (8N4 T ), which precludes a detailed analysis of intra-genus phylogenetic relationships. In this study, we obtained draft genomes of the type strains of the other Rosenbergiella species validly published to date ( R. australiborealis , R. collisarenosi and R. epipactidis ) and 23 additional isolates of flower and insect origin. Isolate S61 T , retrieved from the nectar of an Antirrhinum sp. flower collected in southern Spain, displayed low average nucleotide identity (ANI) and in silico DNA–DNA hybridization (isDDH) values when compared with other Rosenbergiella members (≤86.5 and ≤29.8 %, respectively). Similarly, isolate JB07 T , which was obtained from the floral nectar of Metrosideros polymorpha plants in Hawaii (USA) had ≤95.7 % ANI and ≤64.1 % isDDH with other Rosenbergiella isolates. Therefore, our results support the description of two new Rosenbergiella species for which we propose the names Rosenbergiella gaditana sp. nov. (type strain: S61 T =NCCB 100789 T =DSM 111181 T ) and Rosenbergiella metrosideri sp. nov. (JB07 T =NCCB 100888 T =LMG 32616 T ). Additionally, some R. epipactidis and R. nectarea isolates showed isDDH values<79 % with other conspecific isolates, which suggests that these species include subspecies for which we propose the names Rosenbergiella epipactidis subsp. epipactidis subsp. nov. (S256 T =CECT 8502 T =LMG 27956 T ), Rosenbergiella epipactidis subsp. californiensis subsp. nov. (FR72 T =NCCB 100898 T =LMG 32786 T ), Rosenbergiella epipactidis subsp. japonicus subsp. nov. (K24 T =NCCB 100924 T =LMG 32785 T ), Rosenbergiella nectarea subsp. nectarea subsp. nov. (8N4 T = DSM 24150 T = LMG 26121 T ) and Rosenbergiella nectarea subsp. apis subsp. nov. (B1A T =NCCB 100810 T = DSM 111763 T ), respectively. Finally, we present the first phylogenomic analysis of the genus Rosenbergiella and update the formal description of the species R. australiborealis , R. collisarenosi , R. epipactidis and R. nectarea based on new genomic and phenotypic information. 
    more » « less
  3. Introduction The effect of testosterone (T) therapy on the vaginal microbiota of transgender men (TGM) is not well characterised, although one cross-sectional study comparing the vaginal microbiota of cisgender women to TGM on T≥1 year found that, in 71% of the TGM, the vaginal microbiota was less likely to be Lactobacillus -dominated and more likely to be enriched with >30 other bacterial species, many associated with bacterial vaginosis (BV). This prospective study aims to investigate changes in the composition of the vaginal microbiota over time in TGM who retain their natal genitalia (ie, vagina) and initiate T. In addition, we will identify changes in the vaginal microbiota preceding incident BV (iBV) in this cohort while investigating behavioural factors, along with hormonal shifts, which may be associated with iBV. Methods and analysis T-naïve TGM who have not undergone gender-affirming genital surgery with normal baseline vaginal microbiota (ie, no Amsel criteria, normal Nugent Score with no Gardnerella vaginalis morphotypes) will self-collect daily vaginal specimens for 7 days prior to initiating T and for 90 days thereafter. These specimens will be used for vaginal Gram stain, 16S rRNA gene sequencing and shotgun metagenomic sequencing to characterise shifts in the vaginal microbiota over time, including development of iBV. Participants will complete daily diaries on douching, menses and behavioural factors including sexual activity during the study. Ethics and dissemination This protocol is approved through the single Institutional Review Board mechanism by the University of Alabama at Birmingham. External relying sites are the Louisiana State University Health Sciences Center, New Orleans Human Research Protection Program and the Indiana University Human Research Protection Program. Study findings will be presented at scientific conferences and peer-reviewed journals as well as shared with community advisory boards at participating gender health clinics and community-based organisations servicing transgender people. Registration details Protocol # IRB-300008073. 
    more » « less
  4. Abstract Background

    Carbapenem-resistant Enterobacterales (CRE) are highly concerning MDR pathogens. Horizontal transfer of broad-host-range IncN plasmids may contribute to the dissemination of the Klebsiella pneumoniae carbapenemase (KPC), spreading carbapenem resistance among unrelated bacteria. However, the population structure and genetic diversity of IncN plasmids has not been fully elucidated.

    Objectives

    We reconstructed blaKPC-harbouring IncN plasmid genomes to characterize shared gene content, structural variability, and putative horizontal transfer within and across patients and diverse bacterial clones.

    Methods

    We performed short- and long-read sequencing and hybrid assembly on 45 CRE isolates with blaKPC-harbouring IncN plasmids. Eight serial isolates from two patients were included to assess intra-patient plasmid dynamics. Comparative genomic analysis was performed to assess structural and sequence similarity across plasmids. Within IncN sublineages defined by plasmid MLST and kmer-based clustering, phylogenetic analysis was used to identify closely related plasmids.

    Results

    Comparative analysis of IncN plasmid genomes revealed substantial heterogeneity including large rearrangements in serial patient plasmids and differences in structure and content across plasmid clusters. Within plasmid sublineages, core genome content and resistance gene regions were largely conserved. Closely related plasmids (≤1 SNP) were found in highly diverse isolates, including ten pST6 plasmids found in eight bacterial clones from three different species.

    Conclusions

    Genomic analysis of blaKPC-harbouring IncN plasmids revealed the presence of several distinct sublineages as well as substantial host diversity within plasmid clusters suggestive of frequent mobilization. This study reveals complex plasmid dynamics within a single plasmid family, highlighting the challenge of tracking plasmid-mediated transmission of blaKPC in clinical settings.

     
    more » « less
  5. Abstract Background Tropical members of the sponge genus Ircinia possess highly complex microbiomes that perform a broad spectrum of chemical processes that influence host fitness. Despite the pervasive role of microbiomes in Ircinia biology, it is still unknown how they remain in stable association across tropical species. To address this question, we performed a comparative analysis of the microbiomes of 11 Ircinia species using whole-metagenomic shotgun sequencing data to investigate three aspects of bacterial symbiont genomes—the redundancy in metabolic pathways across taxa, the evolution of genes involved in pathogenesis, and the nature of selection acting on genes relevant to secondary metabolism. Results A total of 424 new, high-quality bacterial metagenome-assembled genomes (MAGs) were produced for 10 Caribbean Ircinia species, which were evaluated alongside 113 publicly available MAGs sourced from the Pacific species Ircinia ramosa . Evidence of redundancy was discovered in that the core genes of several primary metabolic pathways could be found in the genomes of multiple bacterial taxa. Across hosts, the metagenomes were depleted in genes relevant to pathogenicity and enriched in eukaryotic-like proteins (ELPs) that likely mimic the hosts’ molecular patterning. Finally, clusters of steroid biosynthesis genes (CSGs), which appear to be under purifying selection and undergo horizontal gene transfer, were found to be a defining feature of Ircinia metagenomes. Conclusions These results illustrate patterns of genome evolution within highly complex microbiomes that illuminate how associations with hosts are maintained. The metabolic redundancy within the microbiomes could help buffer the hosts from changes in the ambient chemical and physical regimes and from fluctuations in the population sizes of the individual microbial strains that make up the microbiome. Additionally, the enrichment of ELPs and depletion of LPS and cellular motility genes provide a model for how alternative strategies to virulence can evolve in microbiomes undergoing mixed-mode transmission that do not ultimately result in higher levels of damage (i.e., pathogenicity) to the host. Our last set of results provides evidence that sterol biosynthesis in Ircinia -associated bacteria is widespread and that these molecules are important for the survival of bacteria in highly complex Ircinia microbiomes. 
    more » « less