skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wireless batteryless soft sensors for ambulatory cardiovascular health monitoring
Seismocardiography (SCG) is the measure of local vibrations in the chest due to heartbeats. Typically, SCG signals are measured using rigid integrated circuit (IC) accelerometers and bulky electronics. However, as alternatives, recent studies of emerging flexible sensors show promise. Here, we introduce the development of wireless soft capacitive sensors that require no battery or rigid IC components for measuring SCG signals for cardiovascular health monitoring. Both the capacitive and inductive components of the circuit are patterned with laser micromachining of a polyimide-coated copper and are encapsulated with an elastomer. The wearable soft sensor can detect small strain changes on the skin, which is wirelessly measured by examining the power reflected from the antenna at a stimulating frequency. The performance of the device is verified by comparing the fiducial points to SCG measured by a commercial accelerometer and electromyograms from a commercial electrode. Overall, the human subject study demonstrates that the fiducial points are consistent with data from commercial devices, showing the potential of the ultrathin soft sensors for ambulatory cardiovascular monitoring without bulky electronics and rigid components.  more » « less
Award ID(s):
2024742
PAR ID:
10433479
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Soft Science
Volume:
3
Issue:
3
ISSN:
2769-5441
Page Range / eLocation ID:
24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Conventional bulky and rigid electronics prevents compliant interfacing with soft human skin for health monitoring and human-machine interaction, due to the incompatible mechanical characteristics. To overcome the limitations, soft skin-mountable electronics with superior mechanical softness, flexibility, and stretchability provides an effective platform for intimate interaction with humans. In addition, soft electronics offers comfortability when worn on the soft, curvilinear, and dynamic human skin. In this review, recent advances in soft electronics as health monitors and human-machine interfaces (HMIs) are briefly discussed. Strategies to achieve softness in soft electronics including structural designs, material innovations, and approaches to optimize the interface between human skin and soft electronics are briefly reviewed. Characteristics and performances of soft electronic devices for health monitoring, including temperature sensors, pressure sensors for pulse monitoring, pulse oximeters, electrophysiological sensors, and sweat sensors, exemplify their wide range of utility. Furthermore, we review the soft devices for prosthetic limb, household object, mobile machine, and virtual object control to highlight the current and potential implementations of soft electronics for a broad range of HMI applications. This review concludes with a discussion on the current limitations and future opportunities of soft skin-mountable electronics. 
    more » « less
  2. Abstract Cardiovascular diseases remain the leading cause of mortality worldwide, underscoring the need for improved diagnostic tools. Seismocardiography (SCG), a noninvasive technique that records chest surface vibrations generated by cardiac activity, holds promise for such applications. However, the mechanistic origins of SCG waveforms, particularly under varying physiological conditions, remain insufficiently understood. This study presents a finite element modeling approach to simulate SCG signals by tracking the propagation of cardiac wall motion to the chest surface. The computational model, constructed from 4D CT scans of healthy adult subjects, incorporates the lungs, ribcage, muscles, and adipose tissue. Cardiac displacement boundary conditions were extracted using the Lucas-Kanade algorithm, and elastic properties were assigned to different tissues. The simulated SCG signals in the dorsoventral direction were compared to realistic SCG recordings, showing consistency in waveform morphology. Key cardiac events, such as mitral valve closure, aortic valve opening, and closure, were identified on the modeled SCG waveforms and validated with concurrent CT images and left ventricular volume changes. A systematic sensitivity analysis was also conducted to examine how variations in tissue properties, soft tissue thickness, and boundary conditions influence SCG signal characteristics. The results highlight the critical role of personalized anatomical modeling in accurately capturing SCG features, thereby improving the potential of SCG for individualized cardiovascular monitoring and diagnosis. 
    more » « less
  3. Abstract Wearable electronics play important roles in noninvasive, continuous, and personalized monitoring of multiple biosignals generated by the body. To unleash their full potential for the next‐generation human‐centered bio‐integrated electronics, wireless sensing capability is a desirable feature. However, state‐of‐the‐art wireless sensing technologies exploit rigid and bulky electronic modules for power supply, signal generation, and data transmission. This study reports a battery‐free device technology based on a “two‐part” resonance circuit model with modularized, physically separated, and detachable functional units for magnetic coupling and biosensing. The resulting platform combines advantages of electronics and microfluidics with low cost, minimized form factors, and improved performance stability. Demonstration of a detachable sweat patch capable of simultaneous recording of cortisol concentration, pH value, and temperature highlights the potential of the “two‐part” circuit for advanced, transformative biosensing. The resulting wireless sensors provide a new engineering solution to monitoring biosignals through intimate and seamless integration with skin surfaces. 
    more » « less
  4. Sensing and actuation are intricately connected in soft robotics, where contact may change actuator mechanics and robot behavior. To improve soft robotic control and performance, proprioception and contact sensors are needed to report robot state without altering actuation mechanics or introducing bulky, rigid components. For bioinspired McKibben-style fluidic actuators, prior work in sensing has focused on sensing the strain of the actuator by embedding sensors in the actuator bladder during fabrication, or by adhering sensors to the actuator surface after fabrication. However, material property mismatches between sensors and actuators can impede actuator performance, and many soft sensors available for use with fluidic actuators rely on costly or labor-intensive fabrication methods. Here, we demonstrate a low-cost and easy-to manufacture-tubular liquid metal strain sensor for use with soft actuators that can be used to detect actuator strain and contact between the actuator and external objects. The sensor is flexible, can be fabricated with commercial-off-the-shelf components, and can be easily integrated with existing soft actuators to supplement sensing, regardless of actuator shape or size. Furthermore, the soft tubular strain sensor exhibits low hysteresis and high sensitivity. The approach presented in this work provides a low-cost, soft sensing solution for broad application in soft robotics. 
    more » « less
  5. Abstract Cardiovascular diseases, the leading cause of global mortality, demand refined diagnostic methods. Seismocardiography (SCG), a noninvasive method of measuring cardiovascular-induced vibrations on the chest surface, offers promise in assessing cardiac function. The cardiac wall movements are transmitted to the organs around the heart and eventually damped onto the chest surface, where they manifest as visible vibrations. These chest surface vibrations can be measured using an accelerometer via SCG. Although SCG signals are widely used in literature, further investigations are needed to understand the genesis of their patterns under different pathophysiological conditions. The goal of this study is to improve our understanding of the origin of SCG signals by simulating the transmission of cardiac motion reaching the chest surface using finite element method, and linking back the patterns of the simulated SCG signals to specific cardiac events. The computational domain, extracted from 4D computed tomography (CT) images of a healthy subject, comprised the lungs, ribcage, and chest muscles and fat. Using the Lukas-Kanade algorithm, the cardiac wall motion was extracted from the 4D CT scan images and was used as a displacement boundary condition. The elastic material properties were assigned to the lungs, muscles, fat, and rib cage. The dorsoventral SCG component from the finite element modeling was compared with two actual SCG signals obtained from the literature. The left ventricular volume was also calculated from the CT scans and was used to interpret the SCG waveforms. Important cardiac phases were labeled on the SCG signal extracted from the computationally modeled acceleration map near the xiphoid. This type of analysis can provide insights into various cardiac parameters and SCG patterns corresponding to the mitral valve closing, mitral valve opening, aortic valve opening, and aortic valve closure. These findings suggested the effectiveness of this modeling approach in understanding the underlying sources of the SCG waveforms. 
    more » « less