- Award ID(s):
- 1945597
- PAR ID:
- 10433508
- Date Published:
- Journal Name:
- Paleobiology
- Volume:
- 49
- Issue:
- 1
- ISSN:
- 0094-8373
- Page Range / eLocation ID:
- 131 to 152
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Synopsis A substantial body of research has been accumulated around ammonoids over several decades. A core aspect of this research has been attempting to infer their life mode from analysis of the morphology of their shells and the drag they incur as that shell is pushed through the water. Tools such as Westermann Morphospace have been developed to investigate and scaffold hypotheses about the results of these investigations. We use computational fluid dynamics to simulate fluid flow around a suite of 24 theoretical ammonoid morphologies to interrogate systematic variations within this space. Our findings uphold some of the long-standing expectations of drag behavior; conch inflation has the greatest influence over ammonoid drag. However, we also find that other long-standing assumptions, such as oxyconic ammonoids being the best swimmers, are subject to substantial variation and nuance resulting from their morphology that is not accounted for through simple drag assessment.more » « less
-
Slattery, J (Ed.)Of the many shell morphologies produced by ammonoid cephalopods, the helical torticone shape appears poorly-suited to rapid locomotion. We investigate torticone hydrostatics and hydrodynamics through virtual modeling, computational fluid dynamics simulations, and water-chamber experiments, using the Cenomanian (Cretaceous) turrilitid Mariella brazoensis (Roemer, 1852) as a test case. Our hydrostatic model suggests that M. brazoensis, and other torticones, could attain neutral buoyancy. This morphotype is highly stable compared to planispiral cephalopods with a slightly tilted, apex-upward orientation. The corresponding mass distribution, relative to the source of jet propulsion at the hyponome, suggests that jet thrust would be more efficiently transmitted into upwards movement than horizontal movement. Most directions of thrust would send the shell spinning about its vertical axis. We 3D printed shell models to have either surpluses or deficiencies in buoyancy that imparted estimated thrusts of extant cephalopod analogues in the vertical directions within a water chamber. The models consistently rotate aperture-backwards during upward movement, and aperture-forwards during downward movement. A neutrally buoyant model was used to assess rotational aptitude during active locomotion. The model required low torques to sustain rotation. Simulations of water flow around the shell support the movement directions observed in the physical experiments and demonstrate that hydrodynamic drag is lower in the vertical directions than the horizontal directions. These results show that the animal within a torticone shell could spin about its vertical axis easily; perhaps even simple respiration could have allowed rotation at ~20 degrees per second. Hydrostatic and hydrodynamic properties of torticones suggest that rotation and vertical movement potential constrained the behavior of these helically-coiled cephalopods. We interpret that torticone ammonoids, prominent throughout neritic and epeiric seas during the Albian and Cenomanian (Cretaceous), may have used passive spiral motions to feed upon small food items through the water column, and may have had low metabolic demands compared to modern-day coleoids.more » « less
-
ABSTRACT We present a study of molecular gas, traced via CO (3–2) from Atacama Large Millimeter/submillimeter Array data, of four z < 0.2, ‘radio quiet’, type 2 quasars (Lbol ∼ 1045.3–1046.2 erg s−1; L$_{\mathrm{1.4\, GHz}}\sim 10^{23.7}\!-\!10^{24.3}$ W Hz−1). Targets were selected to have extended radio lobes (≥ 10 kpc), and compact, moderate-power jets (1–10 kpc; Pjet ∼ 1043.2–1043.7 erg s−1). All targets show evidence of central molecular outflows, or injected turbulence, within the gas discs (traced via high-velocity wing components in CO emission-line profiles). The inferred velocities (Vout = 250–440 km s−1) and spatial scales (0.6–1.6 kpc), are consistent with those of other samples of luminous low-redshift active galactic nuclei. In two targets, we observe extended molecular gas structures beyond the central discs, containing 9–53 per cent of the total molecular gas mass. These structures tend to be elongated, extending from the core, and wrap-around (or along) the radio lobes. Their properties are similar to the molecular gas filaments observed around radio lobes of, mostly ‘radio loud’, brightest cluster galaxies. They have the following: projected distances of 5–13 kpc; bulk velocities of 100–340 km s−1; velocity dispersion of 30–130 km s−1; inferred mass outflow rates of 4–20 M⊙ yr−1; and estimated kinetic powers of 1040.3–1041.7 erg s−1. Our observations are consistent with simulations that suggest moderate-power jets can have a direct (but modest) impact on molecular gas on small scales, through direct jet–cloud interactions. Then, on larger scales, jet-cocoons can push gas aside. Both processes could contribute to the long-term regulation of star formation.
-
Context. Protostellar jets are an important agent of star formation feedback, tightly connected with the mass-accretion process. The history of jet formation and mass ejection provides constraints on the mass accretion history and on the nature of the driving source. Aims. We characterize the time-variability of the mass-ejection phenomena at work in the class 0 protostellar phase in order to better understand the dynamics of the outflowing gas and bring more constraints on the origin of the jet chemical composition and the mass-accretion history. Methods. Using the NOrthern Extended Millimeter Array (NOEMA) interferometer, we have observed the emission of the CO 2–1 and SO N J = 5 4 –4 3 rotational transitions at an angular resolution of 1.0″ (820 au) and 0.4″ (330 au), respectively, toward the intermediate-mass class 0 protostellar system Cep E. Results. The CO high-velocity jet emission reveals a central component of ≤400 au diameter associated with high-velocity molecular knots that is also detected in SO, surrounded by a collimated layer of entrained gas. The gas layer appears to be accelerated along the main axis over a length scale δ 0 ~ 700 au, while its diameter gradually increases up to several 1000 au at 2000 au from the protostar. The jet is fragmented into 18 knots of mass ~10 −3 M ⊙ , unevenly distributed between the northern and southern lobes, with velocity variations up to 15 km s −1 close to the protostar. This is well below the jet terminal velocities in the northern (+ 65 km s −1 ) and southern (−125 km s −1 ) lobes. The knot interval distribution is approximately bimodal on a timescale of ~50–80 yr, which is close to the jet-driving protostar Cep E-A and ~150–20 yr at larger distances >12″. The mass-loss rates derived from knot masses are steady overall, with values of 2.7 × 10 −5 M ⊙ yr −1 and 8.9 × 10 −6 M ⊙ yr −1 in the northern and southern lobe, respectively. Conclusions. The interaction of the ambient protostellar material with high-velocity knots drives the formation of a molecular layer around the jet. This accounts for the higher mass-loss rate in the northern lobe. The jet dynamics are well accounted for by a simple precession model with a period of 2000 yr and a mass-ejection period of 55 yr.more » « less
-
‘Heteromorph ammonoids’ encompass all ammonoid species whose shapes do not conform to a closely coiled planispiral shell. The term is useful as a broad description for such ammonoids. However, as a concept, ‘heteromorph ammonoids’ no longer has any scientific value or explanatory power. Although such ammonoids have traditionally been considered aberrant forms, they represent instead an integral part of the evolutionary history of the Ammonoidea. ‘Heteromorph ammonoids’, as a whole, are a poly- phyletic group, consisting of a heterogeneous mixture of taxa without any phylogenetic, morphological or ecological coherence. Their treatment as a single entity risks conflating convergences and phylogenetic affinities. It also vastly oversimplifies the stunning array of morphologies and ecological niches occupied by these animals. Investigation into the uncoiling (and recoiling) of ammonoids is a legitimate and worthwhile enterprise, especially in view of the realization that this phenomenon occurred several times in the history of the Ammonoidea. However, few insights can be gained by treating ‘heteromorph ammonoids’ as a single entity. Studies of such ammonoids should focus on monophyletic groups within a well‐constrained phylogenetic and stratigraphical framework to yield meaningful results.more » « less