skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Don't force it! Gradient speech categorization calls for continuous categorization tasks
Research on speech categorization and phoneme recognition has relied heavily on tasks in which participants listen to stimuli from a speech continuum and are asked to either classify each stimulus (identification) or discriminate between them (discrimination). Such tasks rest on assumptions about how perception maps onto discrete responses that have not been thoroughly investigated. Here, we identify critical challenges in the link between these tasks and theories of speech categorization. In particular, we show that patterns that have traditionally been linked to categorical perception could arise despite continuous underlying perception and that patterns that run counter to categorical perception could arise despite underlying categorical perception. We describe an alternative measure of speech perception using a visual analog scale that better differentiates between processes at play in speech categorization, and we review some recent findings that show how this task can be used to better inform our theories.  more » « less
Award ID(s):
2104015
PAR ID:
10433522
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
152
Issue:
6
ISSN:
0001-4966
Page Range / eLocation ID:
3728 to 3745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For much of its history, categorical perception was treated as a foundational theory of speech perception, which suggested that quasi-discrete categorization was a goal of speech perception. This had a profound impact on bilingualism research which adopted similar tasks to use as measures of nativeness or native-like processing, implicitly assuming that any deviation from discreteness was a deficit. This is particularly problematic for listeners like heritage speakers whose language proficiency, both in their heritage language and their majority language, is questioned. However, we now know that in the monolingual listener, speech perception is gradient and listeners use this gradiency to adjust subphonetic details, recover from ambiguity, and aid learning and adaptation. This calls for new theoretical and methodological approaches to bilingualism. We present the Visual Analogue Scaling task which avoids the discrete and binary assumptions of categorical perception and can capture gradiency more precisely than other measures. Our goal is to provide bilingualism researchers new conceptual and empirical tools that can help examine speech categorization in different bilingual communities without the necessity of forcing their speech categorization into discrete units and without assuming a deficit model. 
    more » « less
  2. Abstract Recent studies have documented substantial variability among typical listeners in how gradiently they categorize speech sounds, and this variability in categorization gradience may link to how listeners weight different cues in the incoming signal. The present study tested the relationship between categorization gradience and cue weighting across two sets of English contrasts, each varying orthogonally in two acoustic dimensions. Participants performed a four‐alternative forced‐choice identification task in a visual world paradigm while their eye movements were monitored. We found that (a) greater categorization gradience derived from behavioral identification responses corresponds to larger secondary cue weights derived from eye movements; (b) the relationship between categorization gradience and secondary cue weighting is observed across cues and contrasts, suggesting that categorization gradience may be a consistent within‐individual property in speech perception; and (c) listeners who showed greater categorization gradience tend to adopt a buffered processing strategy, especially when cues arrive asynchronously in time. 
    more » « less
  3. null (Ed.)
    Abstract A listener's interpretation of a given speech sound can vary probabilistically from moment to moment. Previous experience (i.e., the contexts in which one has encountered an ambiguous sound) can further influence the interpretation of speech, a phenomenon known as perceptual learning for speech. This study used multivoxel pattern analysis to query how neural patterns reflect perceptual learning, leveraging archival fMRI data from a lexically guided perceptual learning study conducted by Myers and Mesite [Myers, E. B., & Mesite, L. M. Neural systems underlying perceptual adjustment to non-standard speech tokens. Journal of Memory and Language, 76, 80–93, 2014]. In that study, participants first heard ambiguous /s/–/∫/ blends in either /s/-biased lexical contexts (epi_ode) or /∫/-biased contexts (refre_ing); subsequently, they performed a phonetic categorization task on tokens from an /asi/–/a∫i/ continuum. In the current work, a classifier was trained to distinguish between phonetic categorization trials in which participants heard unambiguous productions of /s/ and those in which they heard unambiguous productions of /∫/. The classifier was able to generalize this training to ambiguous tokens from the middle of the continuum on the basis of individual participants' trial-by-trial perception. We take these findings as evidence that perceptual learning for speech involves neural recalibration, such that the pattern of activation approximates the perceived category. Exploratory analyses showed that left parietal regions (supramarginal and angular gyri) and right temporal regions (superior, middle, and transverse temporal gyri) were most informative for categorization. Overall, our results inform an understanding of how moment-to-moment variability in speech perception is encoded in the brain. 
    more » « less
  4. Most current theories and models of second language speech perception are grounded in the notion that learners acquire speech sound categories in their target language. In this paper, this classic idea in speech perception is revisited, given that clear evidence for formation of such categories is lacking in previous research. To understand the debate on the nature of speech sound representations in a second language, an operational definition of “category” is presented, and the issues of categorical perception and current theories of second language learning are reviewed. Following this, behavioral and neuroimaging evidence for and against acquisition of categorical representations is described. Finally, recommendations for future work are discussed. The paper concludes with a recommendation for integration of behavioral and neuroimaging work and theory in this area. 
    more » « less
  5. Spatial relations, such as above, below, between, and containment, are important mediators in children’s understanding of the world (Piaget, 1954). The development of these relational categories in infancy has been extensively studied (Quinn, 2003) yet little is known about their computational underpinnings. Using developmental tests, we examine the extent to which deep neural networks, pretrained on a standard vision benchmark or egocentric video captured from one baby’s perspective, form categorical representations for visual stimuli depicting relations. Notably, the networks did not receive any explicit training on relations. We then analyze whether these networks recover similar patterns to ones identified in development, such as reproducing the relative difficulty of categorizing different spatial relations and different stimulus abstractions. We find that the networks we evaluate tend to recover many of the patterns observed with the simpler relations of “above versus below” or “between versus outside”, but struggle to match developmental findings related to “containment”. We identify factors in the choice of model architecture, pretraining data, and experimental design that contribute to the extent the networks match developmental patterns, and highlight experimental predictions made by our modeling results. Our results open the door to modeling infants’ earliest categorization abilities with modern machine learning tools and demonstrate the utility and productivity of this approach. 
    more » « less