skip to main content


Title: Outstanding Advantages, Current Drawbacks, and Significant Recent Developments in Mechanochemistry: A Perspective View
Although known since antiquity, mechanochemistry has remained dormant for centuries. Nowadays, mechanochemistry is a flourishing research field at the simultaneous stages of gathering data and (often astonishing) observations, and scientific argumentation toward their analysis, for which the combination of interdisciplinary expertise is necessary. Mechanochemistry’s implementation as a synthetic method is constantly increasing, although it remains far from being fully exploited, or understood on the basis of fundamental principles. This review starts by describing many remarkable advantages of mechanochemical reactions, simplifying and “greening” chemistry in solutions. This description is followed by an overview of the current main weaknesses to be addressed in the near future toward the systematic study of its energetics and chemical mechanisms. This review finishes by describing recent breakthrough experimental advances, such as in situ kinetics monitoring using synchrotron X-ray powder diffraction and Raman spectroscopy, plus equally significant computational chemistry approaches, such as quantum mechanochemistry, used for the understanding of covalent or hydrogen bond ruptures in biomolecules or mechanophores in polymers at the single-molecule level. Combined with new technologies to control temperature and pressure in ball mills, these appealing new methods are promising tools for establishing the fundamental knowledge necessary for the understanding of mechanochemical reactivity and mechanisms.  more » « less
Award ID(s):
2154893
NSF-PAR ID:
10433534
Author(s) / Creator(s):
Date Published:
Journal Name:
Crystals
Volume:
13
Issue:
1
ISSN:
2073-4352
Page Range / eLocation ID:
124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Naphthopyran molecular switches undergo a ring-opening reaction upon external stimulation to generate intensely colored merocyanine dyes. Their unique modularity and synthetic accessibility afford exceptional control over their properties and stimuli-responsive behavior. Commercial applications of naphthopyrans as photoswitches in photochromic ophthalmic lenses have spurred an extensive body of work exploring naphthopyran–merocyanine structure–property relationships. The recently discovered mechanochromic behavior of naphthopyrans has led to their emergent application in the field of polymer mechanochemistry, enabling advances in the design of force-responsive materials as well as fundamental insights into mechanochemical reactivity. The structure–property relationships established in the photochemical literature serve as a convenient blueprint for the design of naphthopyran molecular force probes with precisely tuned properties. On the other hand, the mechanochemical reactivity of naphthopyran diverges in many cases from the conventional photochemical pathways, resulting in unexpected properties and opportunities for deeper understanding and innovation in polymer mechanochemistry. Here, we highlight the features of the naphthopyran scaffold that render it a powerful platform for the design of mechanochromic materials and review recent advances in naphthopyran mechanochemistry. 
    more » « less
  2. Abstract

    Over 8 billion tons of plastic have been produced to date, and a 100% reclamation recycling strategy is not foreseeable. This review summarizes how the mechanochemistry of polymers may contribute to a sustainable polymer future by controlling the degradation not only of de novo developed designer polymers but also of plastics in existing waste streams. The historical development of polymer mechanochemistry is presented while highlighting current examples of mechanochemically induced polymer degradation. Additionally, theoretical and computational frameworks are discussed that may lead to the discovery and better understanding of new mechanochemical reactions in the future. This review takes into account technical and engineering perspectives converging the fields of trituration and polymer mechanochemistry with a particular focus on the fate of commodity polymers and potential technologies to monitor mechanochemical reactions while they occur. Therefore, a unique perspective of multiple communities is presented, highlighting the need for future transdisciplinary research to tackle the high-leverage parameters governing an eventually successful mechanochemical degradation approach for a circular economy.

     
    more » « less
  3. Abstract

    Research hypotheses have been a cornerstone of science since before Galileo. Many have argued that hypotheses (1) encourage discovery of mechanisms, and (2) reduce bias—both features that should increase transferability and reproducibility. However, we are entering a new era of big data and highly predictive models where some argue the hypothesis is outmoded. We hypothesized that hypothesis use has declined in ecology and evolution since the 1990s, given the substantial advancement of tools further facilitating descriptive, correlative research. Alternatively, hypothesis use may have becomemorefrequent due to the strong recommendation by some journals and funding agencies that submissions have hypothesis statements. Using a detailed literature analysis (N = 268 articles), we found prevalence of hypotheses in eco–evo research is very low (6.7%–26%) and static from 1990–2015, a pattern mirrored in an extensive literature search (N = 302,558 articles). Our literature review also indicates that neither grant success nor citation rates were related to the inclusion of hypotheses, which may provide disincentive for hypothesis formulation. Here, we review common justifications for avoiding hypotheses and present new arguments based on benefits to the individual researcher. We argue that stating multiple alternative hypotheses increases research clarity and precision, and is more likely to address the mechanisms for observed patterns in nature. Although hypotheses are not always necessary, we expect their continued and increased use will help our fields move toward greater understanding, reproducibility, prediction, and effective conservation of nature.

     
    more » « less
  4. Free superfluid helium droplets constitute a versatile medium for a diverse range of experiments in physics and chemistry that extend from studies of the fundamental laws of superfluid motion to the synthesis of novel nanomaterials. In particular, the emergence of quantum vortices in rotating helium droplets is one of the most dramatic hallmarks of superfluidity and gives detailed access to the wave function describing the quantum liquid. This review provides an introduction to quantum vorticity in helium droplets, followed by a historical account of experiments on vortex visualization in bulk superfluid helium and a more detailed discussion of recent advances in the study of the rotational motion of isolated, nano- to micrometer-scale superfluid helium droplets. Ultrafast X-ray and extreme ultraviolet scattering techniques enabled by X-ray free-electron lasers and high-order harmonic generation in particular have facilitated the in situ detection of droplet shapes and the imaging of vortex structures inside individual, isolated droplets. New applications of helium droplets ranging from studies of quantum phase separations to mechanisms of low-temperature aggregation are discussed. 
    more » « less
  5. Abstract. Over the past decade, our understanding of the IndianOcean has advanced through concerted efforts toward measuring the oceancirculation and air–sea exchanges, detecting changes in water masses, andlinking physical processes to ecologically important variables. Newcirculation pathways and mechanisms have been discovered that controlatmospheric and oceanic mean state and variability. This review bringstogether new understanding of the ocean–atmosphere system in the IndianOcean since the last comprehensive review, describing the Indian Oceancirculation patterns, air–sea interactions, and climate variability.Coordinated international focus on the Indian Ocean has motivated theapplication of new technologies to deliver higher-resolution observationsand models of Indian Ocean processes. As a result we are discovering theimportance of small-scale processes in setting the large-scale gradients andcirculation, interactions between physical and biogeochemical processes,interactions between boundary currents and the interior, and interactions between thesurface and the deep ocean. A newly discovered regional climate mode in thesoutheast Indian Ocean, the Ningaloo Niño, has instigated more regionalair–sea coupling and marine heatwave research in the global oceans. In thelast decade, we have seen rapid warming of the Indian Ocean overlaid withextremes in the form of marine heatwaves. These events have motivatedstudies that have delivered new insight into the variability in ocean heatcontent and exchanges in the Indian Ocean and have highlighted the criticalrole of the Indian Ocean as a clearing house for anthropogenic heat. Thissynthesis paper reviews the advances in these areas in the last decade. 
    more » « less