skip to main content


This content will become publicly available on August 1, 2024

Title: A Process Model for ITCZ Narrowing under Warming Highlights Clear-Sky Water Vapor Feedbacks and Gross Moist Stability Changes in AMIP Models
Abstract Tropical areas with mean upward motion—and as such the zonal-mean intertropical convergence zone (ITCZ)—are projected to contract under global warming. To understand this process, a simple model based on dry static energy and moisture equations is introduced for zonally symmetric overturning driven by sea surface temperature (SST). Processes governing ascent area fraction and zonal mean precipitation are examined for insight into Atmospheric Model Intercomparison Project (AMIP) simulations. Bulk parameters governing radiative feedbacks and moist static energy transport in the simple model are estimated from the AMIP ensemble. Uniform warming in the simple model produces ascent area contraction and precipitation intensification—similar to observations and climate models. Contributing effects include stronger water vapor radiative feedbacks, weaker cloud-radiative feedbacks, stronger convection-circulation feedbacks, and greater poleward moisture export. The simple model identifies parameters consequential for the inter-AMIP-model spread; an ensemble generated by perturbing parameters governing shortwave water vapor feedbacks and gross moist stability changes under warming tracks inter-AMIP-model variations with a correlation coefficient ∼0.46. The simple model also predicts the multimodel mean changes in tropical ascent area and precipitation with reasonable accuracy. Furthermore, the simple model reproduces relationships among ascent area precipitation, ascent strength, and ascent area fraction observed in AMIP models. A substantial portion of the inter-AMIP-model spread is traced to the spread in how moist static energy and vertical velocity profiles change under warming, which in turn impact the gross moist stability in deep convective regions—highlighting the need for observational constraints on these quantities. Significance Statement A large rainband straddles Earth’s tropics. Most, but not all, climate models predict that this rainband will shrink under global warming; a few models predict an expansion of the rainband. To mitigate some of this uncertainty among climate models, we build a simpler model that only contains the essential physics of rainband narrowing. We find several interconnected processes that are important. For climate models, the most important process is the efficiency with which clouds move heat and humidity out of rainy regions. This efficiency varies among climate models and appears to be a primary reason for why climate models do not agree on the rate of rainband narrowing.  more » « less
Award ID(s):
1936810 2123327
NSF-PAR ID:
10433607
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
36
Issue:
15
ISSN:
0894-8755
Page Range / eLocation ID:
4913 to 4931
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The response of zonal-mean precipitation minus evaporation ( P − E ) to global warming is investigated using a moist energy balance model (MEBM) with a simple Hadley cell parameterization. The MEBM accurately emulates zonal-mean P − E change simulated by a suite of global climate models (GCMs) under greenhouse gas forcing. The MEBM also accounts for most of the intermodel differences in GCM P − E change and better emulates GCM P − E change when compared to the “wet-gets-wetter, dry-gets-drier” thermodynamic mechanism. The intermodel spread in P − E change is attributed to intermodel differences in radiative feedbacks, which account for 60%–70% of the intermodel variance, with smaller contributions from radiative forcing and ocean heat uptake. Isolating the intermodel spread of feedbacks to specific regions shows that tropical feedbacks are the primary source of intermodel spread in zonal-mean P − E change. The ability of the MEBM to emulate GCM P − E change is further investigated using idealized feedback patterns. A less negative and narrowly peaked feedback pattern near the equator results in more atmospheric heating, which strengthens the Hadley cell circulation in the deep tropics through an enhanced poleward heat flux. This pattern also increases gross moist stability, which weakens the subtropical Hadley cell circulation. These two processes in unison increase P − E in the deep tropics, decrease P − E in the subtropics, and narrow the intertropical convergence zone. Additionally, a feedback pattern that produces polar-amplified warming partially reduces the poleward moisture flux by weakening the meridional temperature gradient. It is shown that changes to the Hadley cell circulation and the poleward moisture flux are crucial for understanding the pattern of GCM P − E change under warming. Significance Statement Changes to the hydrological cycle over the twenty-first century are predicted to impact ecosystems and socioeconomic activities throughout the world. While it is broadly expected that dry regions will get drier and wet regions will get wetter, the magnitude and spatial structure of these changes remains uncertain. In this study, we use an idealized climate model, which assumes how energy is transported in the atmosphere, to understand the processes setting the pattern of precipitation and evaporation under global warming. We first use the idealized climate model to explain why comprehensive climate models predict different changes to precipitation and evaporation across a range of latitudes. We show this arises primarily from climate feedbacks, which act to amplify or dampen the amount of warming. Ocean heat uptake and radiative forcing play secondary roles but can account for a significant amount of the uncertainty in regions where ocean circulation influences the rate of warming. We further show that uncertainty in tropical feedbacks (mainly from clouds) affects changes to the hydrological cycle across a range of latitudes. We then show how the pattern of climate feedbacks affects how the patterns of precipitation and evaporation respond to climate change through a set of idealized experiments. These results show how the pattern of climate feedbacks impacts tropical hydrological changes by affecting the strength of the Hadley circulation and polar hydrological changes by affecting the transport of moisture to the high latitudes. 
    more » « less
  2. Abstract

    Simulations of tropical atmospheric circulation response to surface warming vary substantially across models, causing large uncertainties in projections of regional precipitation change. Understanding the physical processes that drive the model spread in tropical circulation changes is critically needed. Here we employ the basic mass balance and energetic constraints on tropical circulation to identify the dominant factors that determine multidecadal circulation strength and area changes in climate models. We show that the models produce a robust weakening of descent rate under warming regardless of surface warming patterns; however, ascent rate change exhibits inter-model spread twice as large as descent rate because of diverse model responses in the radiative effects of clouds, water vapor, and aerosols. As ascent area change is dictated by the disparate descent and ascent rate changes due to the mass budget and the inter-model spread in descent rate change is small, the model spread in ascent area change is dominated by that of ascent rate change, resulting in a strong anti-correlation of –0.85 between the fractional changes of ascent strength and area across 77 climate model simulations. This anti-correlation leads to a corresponding inverse relationship between the rates of precipitation intensifying and narrowing of the inter-tropical convergence zone (ITCZ), suggesting tropical ascent area change can be potentially used to constrain the ITCZ precipitation change. Longwave cloud radiative effect at the top-of-atmosphere (TOA) in the convective region is identified to be a major source of uncertainties for tropical ascent rate change and thus for regional precipitation change.

     
    more » « less
  3. Abstract

    The impacts of rising carbon dioxide (CO2) concentration and ocean feedbacks on the Madden‐Julian Oscillation (MJO) are investigated with the Community Atmospheric Model Version 5 (CAM5) in an idealized aquaplanet configuration. The climate response associated with quadrupled CO2concentrations and sea surface temperature (SST) warming are examined in both the uncoupled CAM5 and a version coupled to a slab ocean model. Increasing CO2concentrations while holding SST fixed produces only small impacts to MJO characteristics, while the SST change resulting from increased CO2concentrations produces a significant increase in MJO precipitation anomaly amplitude but smaller increase in MJO circulation anomaly amplitude, consistent with previous studies. MJO propagation speed increases in both coupled simulations with quadrupling of CO2and uncoupled simulations with the same climatological surface temperature warming imposed, although propagation speed is increased more with coupling. While climatological SST changes are identical between coupled and uncoupled runs, other aspects of the basic state such as zonal winds do not change identically. For example, climate warming produces stronger superrotation and weaker mean lower tropospheric easterlies in the coupled run, which contributes to greater increases in MJO eastward propagation speed with warming through its effect on moisture advection. The column process, representing the sum of vertical moist static energy (MSE) advection and radiative heating anomalies, also supports faster eastward propagation with warming in the coupled run. How differing basic states between coupled and uncoupled runs contribute to this behavior is discussed in more detail.

     
    more » « less
  4. Abstract

    The response of the Pacific Walker circulation (WC) to long‐term warming remains uncertain. Here, we diagnose contributions to the WC response in comprehensive and idealized general circulation model (GCM) simulations. We find that the spread in WC response is substantial across both the Coupled Model Intercomparison Project (CMIP6) and the Atmospheric Model Intercomparison Project (AMIP) models, implicating differences in atmospheric models in the spread in projected WC strength. Using a moist static energy (MSE) budget, we evaluate the contributions to changes in the WC strength related to changes in gross moist stability (GMS), horizontal MSE advection, radiation, and surface fluxes. We find that the multimodel mean WC weakening is mostly related to changes in GMS and radiation. Furthermore, thespreadin WC response is related to the spread in GMS and radiation responses. The GMS response is potentially sensitive to parameterized convective entrainment which can affect lapse rates and the depth of convection. We thus investigate the role of entrainment in setting the GMS response by varying the entrainment rate in an idealized GCM. The idealized GCM is run with a simplified Betts‐Miller convection scheme, modified to represent entrainment. The weakening of the WC with warming in the idealized GCM is dampened when higher entrainment rates are used. However, the spread in GMS responses due to differing entrainment rates is much smaller than the spread in GMS responses across CMIP6 models. Therefore, further work is needed to understand the large spread in GMS responses across CMIP6 and AMIP models.

     
    more » « less
  5. Abstract

    In the Tropical Rain belts with an Annual cycle and Continent Model Intercomparison Project (TRACMIP) ensemble of aquaplanet climate model experiments, CO2‐induced warming is amplified in the poles in 10 out of 12 models, despite the lack of sea ice. We attribute causes of this amplification by perturbing individual radiative forcing and feedback components in a moist energy balance model. We find a strikingly linear pattern of tropical versus polar warming contributions across models and processes, implying that polar amplification is an inherent consequence of diffusion of moist static energy by the atmosphere. The largest contributor to polar amplification is the instantaneous CO2forcing, followed by the water vapor feedback and, for some models, cloud feedbacks. Extratropical feedbacks affect polar amplification more strongly, but even feedbacks confined to the tropics can cause polar amplification. Our results contradict studies inferring warming contributions directly from the meridional gradient of radiative perturbations, highlighting the importance of interactions between feedbacks and moisture transport for polar amplification.

     
    more » « less