skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancing biomedical search interfaces with images
Abstract MotivationFigures in biomedical papers communicate essential information with the potential to identify relevant documents in biomedical and clinical settings. However, academic search interfaces mainly search over text fields. ResultsWe describe a search system for biomedical documents that leverages image modalities and an existing index server. We integrate a problem-specific taxonomy of image modalities and image-based data into a custom search system. Our solution features a front-end interface to enhance classical document search results with image-related data, including page thumbnails, figures, captions and image-modality information. We demonstrate the system on a subset of the CORD-19 document collection. A quantitative evaluation demonstrates higher precision and recall for biomedical document retrieval. A qualitative evaluation with domain experts further highlights our solution’s benefits to biomedical search. Availability and implementationA demonstration is available at https://runachay.evl.uic.edu/scholar. Our code and image models can be accessed via github.com/uic-evl/bio-search. The dataset is continuously expanded.  more » « less
Award ID(s):
1854815 2320261
PAR ID:
10433610
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics Advances
Volume:
3
Issue:
1
ISSN:
2635-0041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biocuration is the process of analyzing biological or biomedical articles to organize biological data into data repositories using taxonomies and ontologies. Due to the expanding number of articles and the relatively small number of biocurators, automation is desired to improve the workflow of assessing articles worth curating. As figures convey essential information, automatically integrating images may improve curation. In this work, we instantiate and evaluate a first-in-kind, hybrid image+text document search system for biocuration. The system, MouseScholar, leverages an image modality taxonomy derived in collaboration with biocurators, in addition to figure segmentation, and classifiers components as a back-end and a streamlined front-end interface to search and present document results. We formally evaluated the system with ten biocurators on a mouse genome informatics biocuration dataset and collected feedback. The results demonstrate the benefits of blending text and image information when presenting scientific articles for biocuration. 
    more » « less
  2. Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data. 
    more » « less
  3. Understanding the relationship between figures and text is key to scientific document understanding. Medical figures in particular are quite complex, often consisting of several subfigures (75% of figures in our dataset), with detailed text describing their content. Previous work studying figures in scientific papers focused on classifying figure content rather than understanding how images relate to the text. To address challenges in figure retrieval and figure-to-text alignment, we introduce MedICaT, a dataset of medical images in context. MedICaT consists of 217K images from 131K open access biomedical papers, and includes captions, inline references for 74% of figures, and manually annotated subfigures and subcaptions for a subset of figures. Using MedICaT, we introduce the task of subfigure to subcaption alignment in compound figures and demonstrate the utility of inline references in image-text matching. Our data and code can be accessed at https://github.com/allenai/medicat. 
    more » « less
  4. null (Ed.)
    Query Biased Summarization (QBS) aims to produce a summary of the documents retrieved against a query to reduce the human effort for inspecting the full-text content of a document. Typical summarization approaches extract a document text snippet that has term overlap with the query and show that to a searcher. While snippets show relevant information in a document, to the best of our knowledge, there does not exist a summarization system that shows what relevant concepts is missing in a document. Our study focuses on the reduction of user effort in finding relevant documents by exposing them to omitted relevant information. To this end, we use a classical approach, DSPApprox, to find terms or phrases relevant to a query. Then we identify which terms or phrases are missing in a document, present them in a search interface, and ask crowd workers to judge document relevance based on snippets and missing information. Experimental results show both benefits and limitations of this approach. 
    more » « less
  5. BackgroundWe performed a systematic review that identified at least 9,000 scientific papers on PubMed that include immunofluorescent images of cells from the central nervous system (CNS). These CNS papers contain tens of thousands of immunofluorescent neural images supporting the findings of over 50,000 associated researchers. While many existing reviews discuss different aspects of immunofluorescent microscopy, such as image acquisition and staining protocols, few papers discuss immunofluorescent imaging from an image-processing perspective. We analyzed the literature to determine the image processing methods that were commonly published alongside the associated CNS cell, microscopy technique, and animal model, and highlight gaps in image processing documentation and reporting in the CNS research field. MethodsWe completed a comprehensive search of PubMed publications using Medical Subject Headings (MeSH) terms and other general search terms for CNS cells and common fluorescent microscopy techniques. Publications were found on PubMed using a combination of column description terms and row description terms. We manually tagged the comma-separated values file (CSV) metadata of each publication with the following categories: animal or cell model, quantified features, threshold techniques, segmentation techniques, and image processing software. ResultsOf the almost 9,000 immunofluorescent imaging papers identified in our search, only 856 explicitly include image processing information. Moreover, hundreds of the 856 papers are missing thresholding, segmentation, and morphological feature details necessary for explainable, unbiased, and reproducible results. In our assessment of the literature, we visualized current image processing practices, compiled the image processing options from the top twelve software programs, and designed a road map to enhance image processing. We determined that thresholding and segmentation methods were often left out of publications and underreported or underutilized for quantifying CNS cell research. DiscussionLess than 10% of papers with immunofluorescent images include image processing in their methods. A few authors are implementing advanced methods in image analysis to quantify over 40 different CNS cell features, which can provide quantitative insights in CNS cell features that will advance CNS research. However, our review puts forward that image analysis methods will remain limited in rigor and reproducibility without more rigorous and detailed reporting of image processing methods. ConclusionImage processing is a critical part of CNS research that must be improved to increase scientific insight, explainability, reproducibility, and rigor. 
    more » « less