Extractive summarization is an important natural language processing approach used for document compression, improved reading comprehension, key phrase extraction, indexing, query set generation, and other analytics approaches. Extractive summarization has specific advantages over abstractive summarization in that it preserves style, specific text elements, and compound phrases that might be more directly associated with the text. In this article, the relative effectiveness of extractive summarization is considered on two widely different corpora: (1) a set of works of fiction (100 total, mainly novels) available from Project Gutenberg, and (2) a large set of news articles (3000) for which a ground truthed summarization (gold standard) is provided by the authors of the news articles. Both sets were evaluated using 5 different Python Sumy algorithms and compared to randomly-generated summarizations quantitatively. Two functional approaches to assessing the efficacy of summarization using a query set on both the original documents and their summaries, and using document classification on a 12-class set to compare among different summarization approaches, are introduced. The results, unsurprisingly, show considerable differences consistent with the different nature of these two data sets. The LSA and Luhn summarization approaches were most effective on the database of fiction, while all five summarization approaches were similarly effective on the database of articles. Overall, the Luhn approach was deemed the most generally relevant among those tested. 
                        more » 
                        « less   
                    
                            
                            Utility of Missing Concepts in Query-biased Summarization
                        
                    
    
            Query Biased Summarization (QBS) aims to produce a summary of the documents retrieved against a query to reduce the human effort for inspecting the full-text content of a document. Typical summarization approaches extract a document text snippet that has term overlap with the query and show that to a searcher. While snippets show relevant information in a document, to the best of our knowledge, there does not exist a summarization system that shows what relevant concepts is missing in a document. Our study focuses on the reduction of user effort in finding relevant documents by exposing them to omitted relevant information. To this end, we use a classical approach, DSPApprox, to find terms or phrases relevant to a query. Then we identify which terms or phrases are missing in a document, present them in a search interface, and ask crowd workers to judge document relevance based on snippets and missing information. Experimental results show both benefits and limitations of this approach. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10276027
- Date Published:
- Journal Name:
- Proceedings of The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 21)
- Page Range / eLocation ID:
- 2056 to 2060
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Carlotta Demeniconi, Ian Davidson: (Ed.)Multi-document summarization, which summarizes a set of documents with a small number of phrases or sentences, provides a concise and critical essence of the documents. Existing multi-document summarization methods ignore the fact that there often exist many relevant documents that provide surrounding background knowledge, which can help generate a salient and discriminative summary for a given set of documents. In this paper, we propose a novel method, SUMDocS (Surrounding-aware Unsupervised Multi-Document Summarization), which incorporates rich surrounding (topically related) documents to help improve the quality of extractive summarization without human supervision. Speci fically, we propose a joint optimization algorithm to unify global novelty (i.e., category-level frequent and discriminative), local consistency (i.e., locally frequent, co-occurring), and local saliency (i.e., salient from its surroundings) such that the obtained summary captures the characteristics of the target documents. Extensive experiments on news and scientifi c domains demonstrate the superior performance of our method when the unlabeled surrounding corpus is utilized.more » « less
- 
            Proc. 2023 The Web Conf. (Ed.)Summarizing text-rich documents has been long studied in the literature, but most of the existing efforts have been made to summarize a static and predefined multi-document set. With the rapid development of online platforms for generating and distributing text-rich documents, there arises an urgent need for continuously summarizing dynamically evolving multi-document sets where the composition of documents and sets is changing over time. This is especially challenging as the summarization should be not only effective in incorporating relevant, novel, and distinctive information from each concurrent multi-document set, but also efficient in serving online applications. In this work, we propose a new summarization problem, Evolving Multi-Document sets stream Summarization (EMDS), and introduce a novel unsupervised algorithm PDSum with the idea of prototype-driven continuous summarization. PDSum builds a lightweight prototype of each multi-document set and exploits it to adapt to new documents while preserving accumulated knowledge from previous documents. To update new summaries, the most representative sentences for each multi-document set are extracted by measuring their similarities to the prototypes. A thorough evaluation with real multi-document sets streams demonstrates that PDSum outperforms state-of-the-art unsupervised multi-document summarization algorithms in EMDS in terms of relevance, novelty, and distinctiveness and is also robust to various evaluation settings.more » « less
- 
            Social media9s explosive growth has resulted in a massive influx of electronic documents influencing various facets of daily life. However, the enormous and complex nature of this content makes extracting valuable insights challenging. Long document summarization emerges as a pivotal technique in this context, serving to distill extensive texts into concise and comprehensible summaries. This paper presents a novel three-stage pipeline for effective long document summarization. The proposed approach combines unsupervised and supervised learning techniques, efficiently handling large document sets while requiring minimal computational resources. Our methodology introduces a unique process for forming semantic chunks through spectral dynamic segmentation, effectively reducing redundancy and repetitiveness in the summarization process. Contrary to previous methods, our approach aligns each semantic chunk with the entire summary paragraph, allowing the abstractive summarization model to process documents without truncation and enabling the summarization model to deduce missing information from other chunks. To enhance the summary generation, we utilize a sophisticated rewrite model based on Bidirectional and Auto- Regressive Transformers (BART), rearranging and reformulating summary constructs to improve their fluidity and coherence. Empirical studies conducted on the long documents from the Webis-TLDR-17 dataset demonstrate that our approach significantly enhances the efficiency of abstractive summarization transformers. The contributions of this paper thus offer significant advancements in the field of long document summarization, providing a novel and effective methodology for summarizing extensive texts in the context of social media.more » « less
- 
            Lengthy documents pose a unique challenge to neural language models due to substantial memory consumption. While existing state-of-the-art (SOTA) models segment long texts into equal-length snippets (e.g., 128 tokens per snippet) or deploy sparse attention networks, these methods have new challenges of context fragmentation and generalizability due to sentence boundaries and varying text lengths. For example, our empirical analysis has shown that SOTA models consistently overfit one set of lengthy documents (e.g., 2000 tokens) while performing worse on texts with other lengths (e.g., 1000 or 4000). In this study, we propose a Length-Aware Multi-Kernel Transformer (LAMKIT) to address the new challenges for the long document classification. LAMKIT encodes lengthy documents by diverse transformer-based kernels for bridging context boundaries and vectorizes text length by the kernels to promote model robustness over varying document lengths. Experiments on five standard benchmarks from health and law domains show LAMKIT outperforms SOTA models up to an absolute 10.9% improvement. We conduct extensive ablation analyses to examine model robustness and effectiveness over varying document lengths.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    