skip to main content


Title: Altered directional functional connectivity underlies post-stroke cognitive recovery
Abstract Cortical ischaemic strokes result in cognitive deficits depending on the area of the affected brain. However, we have demonstrated that difficulties with attention and processing speed can occur even with small subcortical infarcts. Symptoms appear independent of lesion location, suggesting they arise from generalized disruption of cognitive networks. Longitudinal studies evaluating directional measures of functional connectivity in this population are lacking. We evaluated six patients with minor stroke exhibiting cognitive impairment 6–8 weeks post-infarct and four age-similar controls. Resting-state magnetoencephalography data were collected. Clinical and imaging evaluations of both groups were repeated 6- and 12 months later. Network Localized Granger Causality was used to determine differences in directional connectivity between groups and across visits, which were correlated with clinical performance. Directional connectivity patterns remained stable across visits for controls. After the stroke, inter-hemispheric connectivity between the frontoparietal cortex and the non-frontoparietal cortex significantly increased between visits 1 and 2, corresponding to uniform improvement in reaction times and cognitive scores. Initially, the majority of functional links originated from non-frontal areas contralateral to the lesion, connecting to ipsilesional brain regions. By visit 2, inter-hemispheric connections, directed from the ipsilesional to the contralesional cortex significantly increased. At visit 3, patients demonstrating continued favourable cognitive recovery showed less reliance on these inter-hemispheric connections. These changes were not observed in those without continued improvement. Our findings provide supporting evidence that the neural basis of early post-stroke cognitive dysfunction occurs at the network level, and continued recovery correlates with the evolution of inter-hemispheric connectivity.  more » « less
Award ID(s):
1734892
NSF-PAR ID:
10433777
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Brain Communications
Volume:
5
Issue:
3
ISSN:
2632-1297
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stroke patients with hemiparesis display decreased beta band (13–25Hz) rolandic activity, correlating to impaired motor function. However, clinically, patients without significant weakness, with small lesions far from sensorimotor cortex, exhibit bilateral decreased motor dexterity and slowed reaction times. We investigate whether these minor stroke patients also display abnormal beta band activity. Magnetoencephalographic (MEG) data were collected from nine minor stroke patients (NIHSS < 4) without significant hemiparesis, at ~1 and ~6 months postinfarct, and eight age-similar controls. Rolandic relative beta power during matching tasks and resting state, and Beta Event Related (De)Synchronization (ERD/ERS) during button press responses were analyzed. Regardless of lesion location, patients had significantly reduced relative beta power and ERS compared to controls. abnormalities persisted over visits, and were present in both ipsi- and contra-lesional hemispheres, consistent with bilateral impairments in motor dexterity and speed. Minor stroke patients without severe weakness display reduced rolandic beta band activity in both hemispheres, which may be linked to bilaterally impaired dexterity and processing speed, implicating global connectivity dysfunction affecting sensorimotor cortex independent of lesion location. Findings not only illustrate global network disruption after minor stroke, but suggest rolandic beta band activity may be a potential biomarker and treatment target, even for minor stroke patients with small lesions far from sensorimotor areas. 
    more » « less
  2. Stroke patients with hemiparesis display decreased beta band (13–25 Hz) rolandic activity, correlating to impaired motor function. However, clinically, patients without significant weakness, with small lesions far from sensorimotor cortex, exhibit bilateral decreased motor dexterity and slowed reaction times. We investigate whether these minor stroke patients also display abnormal beta band activity. Magnetoencephalographic (MEG) data were collected from nine minor stroke patients (NIHSS < 4) without significant hemiparesis, at ~1 and ~6 months postinfarct, and eight age-similar controls. Rolandic relative beta power during matching tasks and resting state, and Beta Event Related (De)Synchronization (ERD/ERS) during button press responses were analyzed. Regardless of lesion location, patients had significantly reduced relative beta power and ERS compared to controls. Abnormalities persisted over visits, and were present in both ipsi- and contra-lesional hemispheres, consistent with bilateral impairments in motor dexterity and speed. Minor stroke patients without severe weakness display reduced rolandic beta band activity in both hemispheres, which may be linked to bilaterally impaired dexterity and processing speed, implicating global connectivity dysfunction affecting sensorimotor cortex independent of lesion location. Findings not only illustrate global network disruption after minor stroke, but suggest rolandic beta band activity may be a potential biomarker and treatment target, even for minor stroke patients with small lesions far from sensorimotor areas. 
    more » « less
  3. Abstract Introduction

    High-intensity gait training is widely recognized as an effective rehabilitation approach after stroke. Soft robotic exosuits that enhance post-stroke gait mechanics have the potential to improve the rehabilitative outcomes achieved by high-intensity gait training. The objective of thisdevelopment-of-conceptpilot crossover study was to evaluate the outcomes achieved by high-intensity gait training with versus without soft robotic exosuits.

    Methods

    In this 2-arm pilot crossover study, four individuals post-stroke completed twelve visits of speed-based, high-intensity gait training: six consecutive visits of Robotic Exosuit Augmented Locomotion (REAL) gait training and six consecutive visits without the exosuit (CONTROL). The intervention arms were counterbalanced across study participants and separated by 6 + weeks of washout. Walking function was evaluated before and after each intervention using 6-minute walk test (6MWT) distance and 10-m walk test (10mWT) speed. Moreover, 10mWT speeds were evaluated before each training visit, with the time-course of change in walking speed computed for each intervention arm. For each participant, changes in each outcome were compared to minimal clinically-important difference (MCID) thresholds. Secondary analyses focused on changes in propulsion mechanics and associated biomechanical metrics.

    Results

    Large between-group effects were observed for 6MWT distance (d = 1.41) and 10mWT speed (d = 1.14). REAL gait training resulted in an average pre-post change of 68 ± 27 m (p = 0.015) in 6MWT distance, compared to a pre-post change of 30 ± 16 m (p = 0.035) after CONTROL gait training. Similarly, REAL training resulted in a pre-post change of 0.08 ± 0.03 m/s (p = 0.012) in 10mWT speed, compared to a pre-post change of 0.01 ± 06 m/s (p = 0.76) after CONTROL. For both outcomes, 3 of 4 (75%) study participants surpassed MCIDs after REAL training, whereas 1 of 4 (25%) surpassed MCIDs after CONTROL training. Across the training visits, REAL training resulted in a 1.67 faster rate of improvement in walking speed. Similar patterns of improvement were observed for the secondary gait biomechanical outcomes, with REAL training resulting in significantly improved paretic propulsion for 3 of 4 study participants (p < 0.05) compared to 1 of 4 after CONTROL.

    Conclusion

    Soft robotic exosuits have the potential to enhance the rehabilitative outcomes produced by high-intensity gait training after stroke. Findings of thisdevelopment-of-conceptpilot crossover trial motivate continued development and study of the REAL gait training program.

     
    more » « less
  4. Prior research points to a positive concurrent relationship between reasoning ability and both frontoparietal structural connectivity (SC) as measured by diffusion tensor imaging (Tamnes et al., 2010) and frontoparietal functional connectivity (FC) as measured by fMRI (Cocchi et al., 2014). Further, recent research demonstrates a link between reasoning ability and FC of two brain regions in particular: rostrolateral prefrontal cortex (RLPFC) and the inferior parietal lobe (IPL) (Wendelken et al., 2016). Here, we sought to investigate the concurrent and dynamic, lead-lag relationships among frontoparietal SC, FC, and reasoning ability in humans. To this end, we combined three longitudinal developmental datasets with behavioral and neuroimaging data from 523 male and female participants between 6 and 22 years of age. Cross-sectionally, reasoning ability was most strongly related to FC between RLPFC and IPL in adolescents and adults, but to frontoparietal SC in children. Longitudinal analysis revealed that RLPFC-IPL SC, but not FC, was a positive predictor of future changes in reasoning ability. Moreover, we found that RLPFC-IPL SC at one time point positively predicted future changes in RLPFC-IPL FC, whereas, in contrast, FC did not predict future changes in SC. Our results demonstrate the importance of strong white matter connectivity between RLPFC and IPL during middle childhood for the subsequent development of both robust FC and good reasoning ability.SIGNIFICANCE STATEMENT The human capacity for reasoning develops substantially during childhood and has a profound impact on achievement in school and in cognitively challenging careers. Reasoning ability depends on communication between lateral prefrontal and parietal cortices. Therefore, to understand how this capacity develops, we examined the dynamic relationships over time among white matter tracts connecting frontoparietal cortices (i.e., structural connectivity, SC), coordinated frontoparietal activation (functional connectivity, FC), and reasoning ability in a large longitudinal sample of subjects 6-22 years of age. We found that greater frontoparietal SC in childhood predicts future increases in both FC and reasoning ability, demonstrating the importance of white matter development during childhood for subsequent brain and cognitive functioning. 
    more » « less
  5. ABSTRACT IMPACT: Understanding how spinal cord stimulation works and who it works best for will improve clinical trial efficacy and prevent unnecessary surgeries. OBJECTIVES/GOALS: Spinal cord stimulation (SCS) is an intervention for chronic low back pain where standard interventions fail to provide relief. However, estimates suggest only 58% of patients achieve at least 50% reduction in their pain. There is no non-invasive method for predicting relief provided by SCS. We hypothesize neural activity in the brain can fill this gap. METHODS/STUDY POPULATION: We tested SCS patients at 3 times points: baseline (pre-surgery), at day 7 during the trial period (post-trial), and 6 months after a permanent system had been implanted. At each time point participants completed 10 minutes of eyes closed, resting electroencephalography (EEG) and self-reported their pain. EEG was collected with the ActiveTwo system and a 128-electrode cap. Patients were grouped based on the percentage change of their pain from baseline to the final visit using a median split (super responders > average responders). Spectral density powerbands were extracted from resting EEG to use as input features for machine learning analyses. We used support vector machines to predict response to SCS. RESULTS/ANTICIPATED RESULTS: Baseline and post-trial EEG data predicted SCS response at 6-months with 95.56% and 100% accuracy, respectively. The gamma band had the highest performance in differentiating responders. Post-trial EEG data best differentiated the groups with feature weighted dipoles being more highly localized in sensorimotor cortex. DISCUSSION/SIGNIFICANCE OF FINDINGS: Understanding how SCS works and who it works best for is the long-term objective of our collaborative research program. These data provide an important first step towards this goal. 
    more » « less