Stroke patients with hemiparesis display decreased beta band (13–25Hz) rolandic activity, correlating to impaired motor function. However, clinically, patients without significant weakness, with small lesions far from sensorimotor cortex, exhibit bilateral decreased motor dexterity and slowed reaction times. We investigate whether these minor stroke patients also display abnormal beta band activity. Magnetoencephalographic (MEG) data were collected from nine minor stroke patients (NIHSS < 4) without significant hemiparesis, at ~1 and ~6 months postinfarct, and eight age-similar controls. Rolandic relative beta power during matching tasks and resting state, and Beta Event Related (De)Synchronization (ERD/ERS) during button press responses were analyzed. Regardless of lesion location, patients had significantly reduced relative beta power and ERS compared to controls. abnormalities persisted over visits, and were present in both ipsi- and contra-lesional hemispheres, consistent with bilateral impairments in motor dexterity and speed. Minor stroke patients without severe weakness display reduced rolandic beta band activity in both hemispheres, which may be linked to bilaterally impaired dexterity and processing speed, implicating global connectivity dysfunction affecting sensorimotor cortex independent of lesion location. Findings not only illustrate global network disruption after minor stroke, but suggest rolandic beta band activity may be a potential biomarker and treatment target, even for minor stroke patients with small lesions far from sensorimotor areas.
more »
« less
Altered directional functional connectivity underlies post-stroke cognitive recovery
Abstract Cortical ischaemic strokes result in cognitive deficits depending on the area of the affected brain. However, we have demonstrated that difficulties with attention and processing speed can occur even with small subcortical infarcts. Symptoms appear independent of lesion location, suggesting they arise from generalized disruption of cognitive networks. Longitudinal studies evaluating directional measures of functional connectivity in this population are lacking. We evaluated six patients with minor stroke exhibiting cognitive impairment 6–8 weeks post-infarct and four age-similar controls. Resting-state magnetoencephalography data were collected. Clinical and imaging evaluations of both groups were repeated 6- and 12 months later. Network Localized Granger Causality was used to determine differences in directional connectivity between groups and across visits, which were correlated with clinical performance. Directional connectivity patterns remained stable across visits for controls. After the stroke, inter-hemispheric connectivity between the frontoparietal cortex and the non-frontoparietal cortex significantly increased between visits 1 and 2, corresponding to uniform improvement in reaction times and cognitive scores. Initially, the majority of functional links originated from non-frontal areas contralateral to the lesion, connecting to ipsilesional brain regions. By visit 2, inter-hemispheric connections, directed from the ipsilesional to the contralesional cortex significantly increased. At visit 3, patients demonstrating continued favourable cognitive recovery showed less reliance on these inter-hemispheric connections. These changes were not observed in those without continued improvement. Our findings provide supporting evidence that the neural basis of early post-stroke cognitive dysfunction occurs at the network level, and continued recovery correlates with the evolution of inter-hemispheric connectivity.
more »
« less
- Award ID(s):
- 1734892
- PAR ID:
- 10433777
- Date Published:
- Journal Name:
- Brain Communications
- Volume:
- 5
- Issue:
- 3
- ISSN:
- 2632-1297
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Stroke patients with hemiparesis display decreased beta band (13–25 Hz) rolandic activity, correlating to impaired motor function. However, clinically, patients without significant weakness, with small lesions far from sensorimotor cortex, exhibit bilateral decreased motor dexterity and slowed reaction times. We investigate whether these minor stroke patients also display abnormal beta band activity. Magnetoencephalographic (MEG) data were collected from nine minor stroke patients (NIHSS < 4) without significant hemiparesis, at ~1 and ~6 months postinfarct, and eight age-similar controls. Rolandic relative beta power during matching tasks and resting state, and Beta Event Related (De)Synchronization (ERD/ERS) during button press responses were analyzed. Regardless of lesion location, patients had significantly reduced relative beta power and ERS compared to controls. Abnormalities persisted over visits, and were present in both ipsi- and contra-lesional hemispheres, consistent with bilateral impairments in motor dexterity and speed. Minor stroke patients without severe weakness display reduced rolandic beta band activity in both hemispheres, which may be linked to bilaterally impaired dexterity and processing speed, implicating global connectivity dysfunction affecting sensorimotor cortex independent of lesion location. Findings not only illustrate global network disruption after minor stroke, but suggest rolandic beta band activity may be a potential biomarker and treatment target, even for minor stroke patients with small lesions far from sensorimotor areas.more » « less
-
Abstract IntroductionHigh-intensity gait training is widely recognized as an effective rehabilitation approach after stroke. Soft robotic exosuits that enhance post-stroke gait mechanics have the potential to improve the rehabilitative outcomes achieved by high-intensity gait training. The objective of thisdevelopment-of-conceptpilot crossover study was to evaluate the outcomes achieved by high-intensity gait training with versus without soft robotic exosuits. MethodsIn this 2-arm pilot crossover study, four individuals post-stroke completed twelve visits of speed-based, high-intensity gait training: six consecutive visits of Robotic Exosuit Augmented Locomotion (REAL) gait training and six consecutive visits without the exosuit (CONTROL). The intervention arms were counterbalanced across study participants and separated by 6 + weeks of washout. Walking function was evaluated before and after each intervention using 6-minute walk test (6MWT) distance and 10-m walk test (10mWT) speed. Moreover, 10mWT speeds were evaluated before each training visit, with the time-course of change in walking speed computed for each intervention arm. For each participant, changes in each outcome were compared to minimal clinically-important difference (MCID) thresholds. Secondary analyses focused on changes in propulsion mechanics and associated biomechanical metrics. ResultsLarge between-group effects were observed for 6MWT distance (d = 1.41) and 10mWT speed (d = 1.14). REAL gait training resulted in an average pre-post change of 68 ± 27 m (p = 0.015) in 6MWT distance, compared to a pre-post change of 30 ± 16 m (p = 0.035) after CONTROL gait training. Similarly, REAL training resulted in a pre-post change of 0.08 ± 0.03 m/s (p = 0.012) in 10mWT speed, compared to a pre-post change of 0.01 ± 06 m/s (p = 0.76) after CONTROL. For both outcomes, 3 of 4 (75%) study participants surpassed MCIDs after REAL training, whereas 1 of 4 (25%) surpassed MCIDs after CONTROL training. Across the training visits, REAL training resulted in a 1.67 faster rate of improvement in walking speed. Similar patterns of improvement were observed for the secondary gait biomechanical outcomes, with REAL training resulting in significantly improved paretic propulsion for 3 of 4 study participants (p < 0.05) compared to 1 of 4 after CONTROL. ConclusionSoft robotic exosuits have the potential to enhance the rehabilitative outcomes produced by high-intensity gait training after stroke. Findings of thisdevelopment-of-conceptpilot crossover trial motivate continued development and study of the REAL gait training program.more » « less
-
Transcranial magnetic stimulation (TMS) is gaining increasing attention for therapeutic treatment of mental illnesses. However, a clear understanding of its impact to the underlying brain mechanisms is critical for its effective application. For this, we analyze electroencephalography (EEG) response to TMS subthreshold pulse at the left motor cortex from 6 healthy controls and 6 schizophrenia patients. We use principal component analysis (PCA) along sparse nonnegative matrix factorization (NMF), an unsupervised machine learning technique, on brain connectivity data established by sliding window coherence of EEG based source localized data. The source localization was achieved by using the sLORETA algorithm on our EEG data after artifact removal. This, hence, provides high temporal and spatial resolution in the connectivity analysis results, giving advantage over other neuroimaging modalities. PCA aids in establishing the number of common underlying connected subnetworks (say k) across subjects whereas NMF is employed to derive these k spatial and temporal signature subnetwork response to the stimulus. Within these signatures, we studied motor cortical connectivity and found that schizophrenia patients exhibited sensory gating deficits as compared to controls. These findings can act as potential biomarkers to monitor TMS for clinical therapeutic techniques in the future.more » « less
-
Studying electroencephalography (EEG) in response to transcranial magnetic stimulation (TMS) is gaining popularity for investigating the dynamics of complex neural architecture in the brain. For example, the primary motor cortex (M1) executes voluntary movements by complex connections with other associated subnetworks. To understand these connections better, we analyzed EEG signal response to TMS at left M1 from schizophrenia patients and healthy controls and in contrast with resting state EEG recording. After removing artifacts from EEG, we conducted 2D to 3D sLORETA conversion, a well-established source localization method, for estimating signal strength of 68 source dipoles or cortical regions inside the brain. Next, we studied dynamic connectivity by computing time-evolving spatial coherence of 2278 (=68*(68-1)/2) pairs of cortical regions, with sliding window technique of 200ms window size and 20ms shift over 1sec long data. Pairs with consistent coherence (coherence>0.8 during 200+ sliding windows of patients and controls combined) were chosen for identifying stable networks. For example, we found that during the resting state, precuneus was steadily coherent with middle and superior temporal gyrus in the left hemisphere in both patient and controls. Their connectivity pattern over the sliding windows significantly differed between patients and controls (pvalue<0.05). Whereas for M1, the same was true for two other coherent pairs namely, superamarginal gyrus with lateral occipital gyrus in right hemisphere and medial orbitofrontal gyrus with fusiform in left hemisphere. The TMS-EEG dynamic connectivity results can help to differentiate patient and normal subjects and also help to better understand the brain architecture and mechanisms.more » « less
An official website of the United States government

