skip to main content


Title: Microplastic ingestion perturbs the microbiome of Aedes albopictus (Diptera: Culicidae) and Aedes aegypti
Abstract

Microplastics (MPs) are common environmental pollutants; however, little is known about their effects after ingestion by insects. Here we fed Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) mosquito larvae 1 µm polystyrene MPs and examined the impacts of ingestion on adult emergence rates, gut damage, and fungal and bacterial microbiota. Results show that MPs accumulate in the larval guts, resulting in gut damage. However, little impact on adult emergence rates was observed. MPs are also found in adult guts postemergence from the pupal stage, and adults expel MPs in their frass after obtaining sugar meals. Moreover, MPs effects on insect microbiomes need to be better defined. To address this knowledge gap, we investigated the relationship between MP ingestion and the microbial communities in Ae. albopictus and Ae. aegypti. The microbiota composition was altered by the ingestion of increasing concentrations of MPs. Amplicon sequence variants (ASVs) that contributed to differences in the bacterial and fungal microbiota composition between MP treatments were from the genera Elizabethkingia and Aspergillus, respectively. Furthermore, a decrease in the alpha diversity of the fungal and bacterial microbiota was observed in treatments where larvae ingested MPs. These results highlight the potential for the bacterial and fungal constituents in the mosquito microbiome to respond differently to the ingestion of MPs. Based on our findings and the effects of MP ingestion on the mosquito host micro- and mycobiome, MP pollution could impact the vector competence of important mosquito-transmitted viruses and parasites that cause human and animal diseases.

 
more » « less
Award ID(s):
2136670
NSF-PAR ID:
10433881
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Medical Entomology
Volume:
60
Issue:
5
ISSN:
0022-2585
Page Range / eLocation ID:
p. 884-898
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Young, Vincent B. (Ed.)
    ABSTRACT Mosquito larvae encounter diverse assemblages of bacteria (i.e., “microbiota”) and fungi in the aquatic environments that they develop in. However, while a number of studies have addressed the diversity and function of microbiota in mosquito life history, relatively little is known about mosquito-fungus interactions outside several key fungal entomopathogens. In this study, we used high-throughput sequencing of internal transcribed spacer 2 (ITS2) metabarcode markers to provide the first simultaneous characterization of the fungal communities in field-collected Aedes albopictus larvae and their associated aquatic environments. Our results reveal unprecedented variation in fungal communities among adjacent but discrete larval breeding habitats. Our results also reveal a distinct fungal community assembly in the mosquito gut versus other tissues, with gut-associated fungal communities being most similar to those present in the environment where larvae feed. Altogether, our results identify the environment as the dominant factor shaping the fungal community associated with mosquito larvae, with no evidence of environmental filtering by the gut. These results also identify mosquito feeding behavior and fungal mode of nutrition as potential drivers of tissue-specific fungal community assembly after environmental acquisition. IMPORTANCE The Asian tiger mosquito, Aedes albopictus , is the dominant mosquito species in the United States and an important vector of arboviruses of major public health concern. One aspect of mosquito control to curb mosquito-borne diseases has been the use of biological control agents such as fungal entomopathogens. Recent studies also demonstrate the impact of mosquito-associated microbial communities on various mosquito traits, including vector competence. However, while much research attention has been dedicated to understanding the diversity and function of mosquito-associated bacterial communities, relatively little is known about mosquito-associated fungal communities. A better understanding of the factors that drive fungal community diversity and assembly in mosquitoes will be essential for future efforts to target mosquito-associated bacteria and fungi for mosquito and mosquito-borne disease control. 
    more » « less
  2. Abstract

    Mosquitoes are insects of interest because several species vector disease‐causing pathogens to humans and other vertebrates. We previously reported that mosquitoes from long‐term laboratory cultures require living bacteria in their gut to develop, but development does not depend on particular species of bacteria. Here, we focused on three distinct but interrelated areas of study to better understand the role of bacteria in mosquito development by studying field and laboratory populations ofAedes aegypti,Aedes albopictusandCulex quinquefasciatusfrom the southeastern United States. Sequence analysis of bacterial 16S rRNA gene amplicons showed that bacterial community composition differed substantially in larvae from different collection sites, whereas larvae from the same site shared similarities. Although previously unknown to be infected byWolbachia, results also indicated thatAe. aegyptifrom one field site hosted a dual infection. Regardless of collection site or factors likeWolbachiainfection, however, each mosquito species required living bacteria in their digestive tract to develop. Results also identified several concerns in using antibiotics to eliminate the bacterial community in larvae in order to study its developmental consequences. Altogether, our results indicate that several mosquito species require living bacteria for development. We also hypothesize these species do not rely on particular bacteria because larvae do not reliably encounter the same bacteria in the aquatic habitats they develop in.

     
    more » « less
  3. ABSTRACT

    Vectors of infectious disease include several species of Aedes mosquitoes. The life cycle of Aedes aegypti, the yellow fever mosquito, consists of a terrestrial adult and an aquatic larval life stage. Developing in coastal waters can expose larvae to fluctuating salinity, causing salt and water imbalance, which is addressed by two prime osmoregulatory organs – the Malpighian tubules (MTs) and anal papillae (AP). Voltage-gated ion channels (VGICs) have recently been implicated in the regulation of ion transport in the osmoregulatory epithelia of insects. In the current study, we: (i) generated MT transcriptomes of freshwater-acclimated and brackish water-exposed larvae of Ae. aegypti, (ii) detected expression of several voltage-gated Ca2+, K+, Na+ and non-ion-selective ion channels in the MTs and AP using transcriptomics, PCR and gel electrophoresis, (iii) demonstrated that mRNA abundance of many altered significantly following brackish water exposure, and (iv) immunolocalized CaV1, NALCN, TRP/Painless and KCNH8 in the MTs and AP of larvae using custom-made antibodies. We found CaV1 to be expressed in the apical membrane of MTs of both larvae and adults, and its inhibition to alter membrane potentials of this osmoregulatory epithelium. Our data demonstrate that multiple VGICs are expressed in osmoregulatory epithelia of Ae. aegypti and may play an important role in the autonomous regulation of ion transport.

     
    more » « less
  4. The markedly anthropophilic and endophilic behaviors of Aedes aegypti (L.) make it a very efficient vector of dengue, chikungunya, and Zika viruses. Although a large body of research has investigated the immature habitats and conditions for adult emergence, relatively few studies have focused on the indoor resting behavior and distribution of vectors within houses. We investigated the resting behavior of Ae. aegypti indoors in 979 houses of the city of Acapulco, Mexico, by performing exhaustive indoor mosquito collections to describe the rooms and height at which mosquitoes were found resting. In total, 1,403 adult and 747 female Ae. aegypti were collected, primarily indoors (98% adults and 99% females). Primary resting locations included bedrooms (44%), living rooms (25%), and bathrooms (20%), followed by kitchens (9%). Aedes aegypti significantly rested below 1.5 m of height (82% adults, 83% females, and 87% bloodfed females); the odds of finding adult Ae. aegypti mosquitoes below 1.5 m was 17 times higher than above 1.5 m. Our findings provide relevant information for the design of insecticide-based interventions selectively targeting the adult resting population, such as indoor residual spraying. 
    more » « less
  5. ika virus is an emerging arbovirus of humans in the western hemisphere. With its potential spread into new geographical areas, it is important to define the vector competence of native mosquito species. We tested the vector competency of Aedes vexans (Meigen) from the Lake Agassiz Plain of northwestern Minnesota and northeastern North Dakota. Aedes aegypti (L.) was used as a positive control for comparison. Mosquitoes were fed blood containing Zika virus and 2 wk later were tested for viral infection and dissemination. Aedes vexans (n = 60) were susceptible to midgut infection (28% infection rate) but displayed a fairly restrictive midgut escape barrier (3% dissemination rate). Cofed Ae. aegypti (n = 22) displayed significantly higher rates of midgut infection (61%) and dissemination (22%). To test virus transmission, mosquitoes were inoculated with virus and 16-17 d later, tested for their ability to transmit virus into fluid-filled capillary tubes. Unexpectedly, the transmission rate was significantly higher for Ae. vexans (34%, n = 47) than for Ae. aegypti (5%, n = 22). The overall transmission potential for Ae. vexans to transmit Zika virus was 1%. Because of its wide geographic distribution, often extreme abundance, and aggressive human biting activity, Ae. vexans could serve as a potential vector for Zika virus in northern latitudes where the conventional vectors, Ae. aegypti and Ae. albopictus Skuse, cannot survive. However, Zika virus is a primate virus and humans are the only amplifying host species in northern latitudes. To serve as a vector of Zika virus, Ae. vexans must feed repeatedly on humans. Defining the propensity of Ae. vexans to feed repeatedly on humans will be key to understanding its role as a potential vector of Zika virus. 
    more » « less