skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental Investigation of a High-Frequency Pulsed Supersonic Co-Axial Injector using Optical Diagnostics
With an increased national emphasis on the development of high-speed systems, especially those utilizing air-breathing propulsion, there is a strong demand for efficient means of enhancing the mixing of fuel injection and an air stream that may be moving at supersonic speeds. In recent years, small scale fluidic-based actuators have shown promise in their ability promote efficient mixing in these scenarios due to their small size and having no moving parts. High-frequency pulsed co-axial actuators developed at Tuskegee University are one such device that only rely on a compressed gas source and particular geometric designs to enable rapid pulsed injection. These actuators are able to efficiently atomize injected fluids, such as fuels or oxidizers, and they can be designed to pulse at frequencies in excess of 15 kHz. This paper presents the results of an experimental investigation of one such device using advanced optical and laser diagnostics to measure both the spectral content and the unsteady velocity fields of the pulsed jet output. The flowfield is visualized with high-speed schlieren imaging, and the near-field acoustic emission is measured by a microphone. Focused laser differential interferometry (FLDI) and planar particle image velocimetry (PIV) are conducted within the actuator’s pulsed jet output. The spectral content measured from FLDI closely matches the acoustic spectra. While the phase-locked velocity fields demonstrate the pulsing behavior of the actuator’s core flow jet, the calculated velocities appear to be lower than what was anticipated based on inspection of the high-speed schlieren images. Velocity fields are presented for the actuator operating in both steady and pulsed modes of operation, and the results indicate that the pulsed actuation jet has the potential to significantly enhance mixing of the annular stream when it is introduced.  more » « less
Award ID(s):
1900177
PAR ID:
10433927
Author(s) / Creator(s):
Date Published:
Journal Name:
AIAA Aviation 2023
Issue:
4240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. AIAA (Ed.)
    With a focus on improving mixing at extreme flow velocity conditions, this paper presents planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) studies on the flowfield of a high-speed, pulsed co-flow system integrated with a high-frequency actuator operating at 15 kHz. This active injection system delivers a supersonic pulsed actuation air jet at the inner core of the co-axial nozzle that provides large mean and fluctuating velocity profiles in the shear layers of a fluid stream injected surrounding the core through an annular nozzle. The instantaneous velocity, vorticity, and acetone concentration fields of the injector in three distinct modes of operation – pulsed actuation, steady actuation, and without actuation -are presented. The high-frequency streamwise vortices and shockwaves tailored to the mean flow significantly enhanced supersonic flow mixing between the fluids compared to the steady co-axial configuration operating at the same input pressure. The study analyzes the mixing and dynamic characteristics of this active co-axial injection system, which has the potential for supersonic mixing applications. 
    more » « less
  2. Efficient and controlled mixing of fuel with fast-moving air is a challenging physical problem relevant to hypersonic systems. Although mixing happens at the molecular level through diffusion, the macroscopic phenomena such as entrainment and vorticity dynamics resulting from the shear layer instabilities of the mixing fluids play a significant role in the overall efficiency of the process. With a focus on improving mixing at extreme flow conditions, this paper presents a fundamental study of a novel, high-speed, pulsed co-flow system integrated with ultra-high frequency actuators that operates at 11-20 kHz. This injection system consists of a supersonic actuation air jet at the inner core that provides large mean and fluctuating velocity profiles in the shear layers of a fluid stream injected surrounding the core through an annular nozzle, with pulsing occurring at a designated frequency. The high-frequency streamwise vortices and shockwaves tailored to the mean flow significantly enhanced supersonic flow mixing between the fluids compared to a steady co-axial configuration operating at the same input pressure. Experiments also indicate a strong connection between the frequency and unsteady amplitude of the actuation jet to the supersonic flow mixing phenomena. This paper reports the design details of the injector assembly and flow mixing characteristics captured using phase-locked microschlieren and planar laser-induced fluorescence (PLIF) techniques. 
    more » « less
  3. AIAA (Ed.)
    Efficient and controlled mixing of fuel with fast-moving air is a challenging physical problem relevant to hypersonic systems. Although mixing happens at the molecular level through diffusion, the macroscopic phenomenon such as entrainment and vorticity dynamics resulting from the shear layer instabilities of the mixing fluids play a significant role in the overall efficiency of the process. With a focus on improving mixing at extreme flow conditions, this paper presents a fundamental study of a novel, high-speed, pulsed coflow system integrated with ultrahigh-frequency actuators (11–20 kHz). This injection system consists of a supersonic actuation air jet at the inner core that provides large mean and fluctuating velocity profiles in the shear layers of a fluid stream injected surrounding the core through an annular nozzle, with pulsing occurring at a designated frequency. The high-frequency streamwise vortices and shockwaves tailored to the mean flow significantly enhanced supersonic flow mixing between the fluids compared to a steady coaxial configuration operating at the same input pressure. Experiments also indicate a strong connection between the frequency and unsteady amplitude of the actuation jet to the supersonic flow mixing phenomenon. This paper reports the design details of the injector assembly and flow mixing characteristics captured using phase-locked microschlieren and planar laser-induced fluorescence techniques. 
    more » « less
  4. This paper presents the velocity and vorticity fields of a supersonic, pulsed co-flow injection system, measured using particle image velocimetry (PIV). The active injection system consists of an actuation air jet from a nozzle (1 mm ID, 1.5 mm OD) that provides large mean and fluctuating velocity profiles to the shear layers of a fluid stream injected through a 460 μm diameter annular space surrounding the nozzle. The injector assembly is designed to operate in three modes in the present study. In the first case, annular fluid was injected at 70 m/s without actuation and treated as baseline flow. In the second case, a steady under-expanded supersonic jet with an exit velocity of 350 m/s interacts with the injected annular fluid. In the last case, the actuation jet pulsing at 15.5 kHz introduces highfrequency streamwise vortices and shockwaves to the annular stream. PIV data indicate that steady and pulsed actuation significantly modifies the velocity and vorticity fields of annular flow. While steady actuation caused intensive shear and high vorticity streaks in the flow, the high-frequency vortex generated in pulsed actuation resulted in highly fluctuating velocity and vorticity fields that favor enhanced mixing between the annular stream and supersonic actuation jet. Quantitative data from this study confirm the potential of this injector system for flow mixing and control under extreme conditions. 
    more » « less
  5. Holger, Babinsky (Ed.)
    Abstract This paper presents experimental studies on a novel active high-frequency coaxial injector system designed for enhanced flow mixing and control at extreme flow velocity conditions. The flow dynamics and mixing characteristics of the system operating at 15kHz were captured using planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) techniques and compared against its steady and baseline modes. In pulsed mode, this active injection system delivers a pulsed supersonic actuation air jet at the inner core of the coaxial nozzle that provides large mean and fluctuating velocity profiles in the shear layers of an acetone-seeded fluid stream injected surrounding the core through an annular nozzle. The instantaneous velocity, vorticity and acetone concentration fields of the injector are discussed. The high-frequency streamwise vortices and shockwaves tailored to the mean flow significantly enhanced supersonic flow mixing between the fluids compared to a classical steady coaxial configuration operating at the same input pressure. The paper analyses the dynamic and diffusion characteristics of this active coaxial injection system, which may have potential for supersonic mixing applications. 
    more » « less